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Abstract

Terrestrial carnivorans, with their diverse diets and unique adaptations such as the
carnassial tooth, offer insights into the connections between functional traits and
the climatic and environmental conditions they inhabit. They shed light on functional
trait-environment relationships at the highest trophic levels across a broad range of
environmental conditions. In this study, we evaluate the relationship between relative
blade length (RBL) of the lower carnassial tooth, a key dietary adaptation among ter-
restrial carnivorans for slicing and grinding food items, and climate. We propose RBL
as an ecometric trait and test the hypothesis that community-level RBL is correlated
with climate and mediated by environmental effects on food availability. Our findings
show that communities with higher mean and broader variance of RBL are typically
located in warmer and wetter climates, suggesting a relationship between carnivoran
dietary diversity and climate. Conversely, communities with a lower mean and nar-
rower variance of RBL predominantly occupy cooler, drier places. This indicates that
community-level carnivoran dietary traits have the potential to serve as indicators of
environmental conditions. Given the robust fossil record associated with carnivorans,
we also show how RBL can be used as a proxy for reconstructing paleoclimates

by examining trait change at seven sites in North America to estimate changes in
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1 | INTRODUCTION

Understanding the factors that guide community assembly and
global habitation patterns is a perennial challenge in biogeography,
ecology, and conservation research (Gaston, 2000; Mittelbach &
Schemske, 2015; Weiher et al., 2011). Communities are often sorted
geographically across temperature and precipitation gradients, pat-
terns that are mediated by the functional traits displayed by commu-
nity members (Violle et al., 2014; Weiher et al., 2011; Wiens, 2011).
Functional traits describe attributes that are strongly related to or-
ganismal performance and may include a variety of features such as
dental morphology, locomotor strategy, and behavioral and physi-
ological attributes (Eronen, Polly, et al., 2010; McGill et al., 2006).
As we develop an understanding of the relationships between func-
tional traits and environments, we can identify the geographic re-
gions that may be at risk of future disruptions to those relationships,
and we can understand how ecometric relationships may be modu-
lated both spatially and temporally (McGuire et al., 2023).
Ecometrics evaluate trait-environment relationships at the com-
munity level across spatial gradients, thereby accounting for the
trait diversity of a functional assemblage (Eronen, Polly, et al., 2010;
Polly et al., 2011; Polly & Head, 2015; Vermillion et al., 2018).
Ecometric traits that represent dietary ecology, locomotory strat-
egy, and physiology have been identified in several groups of ver-
tebrates (Barr, 2017; Gruwier & Kovarovic, 2022; Head et al., 2009;
Meloro & Sansalone, 2022; Oksanen et al.,, 2019; Polly, 2010;
Short & Lawing, 2021). For example, the locomotor traits of carniv-
oran communities are indicative of ecoregion and vegetation type
(Polly, 2010; Short et al., 2023). Carnivoran communities composed
of cursorial species with digitigrade hindlimb traits are frequently
located in more open, grassland habitats, whereas plantigrade com-
munities, more commonly associated with an arboreal strategy,
are frequently located in woodland habitats (Polly, 2010, 2020).
Ecometrics can provide robust models of trait-environment rela-
tionships across global ecosystems (Eronen, Puolamaki, et al., 2010;
Short et al., 2023; Short & Lawing, 2021) and can be used to hind-
cast environmental conditions associated with paleocommunities
(Schap et al., 2021; Schap et al., 2024; Short et al., 2023; Short &
Lawing, 2021). Given that carnivorans are geographically wide-
spread, inhabit diverse environmental conditions, and have highly

temperature and precipitation over time in relation to changes in carnivoran commu-
nity assembly. Understanding the nature of trait-environment relationships can help
us anticipate biological impacts of ongoing environmental change and the geographic

regions at the greatest risk of ecological disruption.

carnassial teeth, carnivorans, dietary ecology, ecometrics, paleoclimate
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variable diets, the trait-environment relationships associated with
their dietary morphology may illuminate environmental factors that
have yet to be adequately addressed by exploring other trophic
groups. Carnivorans are also represented by an extensive paleonto-
logical record, which provides a further opportunity to explore these
trait-environment relationships across a temporal scale.

Dietary ecometrics are well developed for herbivorous species,
including the tooth crown heights and loph counts of ungulates in
relationship to precipitation (e.g., Eronen et al., 2010b; Fortelius
et al., 2002, 2014; Jernvall & Fortelius, 2002; Zliobaite et al., 2018),
the loph counts of ungulates and primates in relationship to tem-
perature (Oksanen et al., 2019), the tooth crown heights of small
mammals in relationship to temperature and precipitation (e.g.,
Schap et al., 2021; Schap et al., 2024), and the combined tooth crown
heights of small and large herbivorous mammal species in relation-
ship to precipitation (Short et al., 2021). Given that herbivorous diets
are directly related to primary productivity, these communities are
expected to display a tight ecometric relationship between trait
morphology and environmental conditions. Terrestrial carnivorans
display wide dietary preferences, from strict obligate carnivores
(e.g., felids) to predominantly herbivorous species (e.g., giant panda,
Ailuropoda melanoleuca) as well as an array of omnivorous, frugiv-
orous, and invertivorous species (Friscia et al., 2007; Middleton
et al,, 2021; Van Valkenburgh, 1989). Terrestrial carnivoran diets are
also expected to be indirectly related to the environment through
their foods, where the availability of fruits and seeds, as well as ver-
tebrate and invertebrate prey are also strongly dictated by climatic
conditions (Cruz et al., 2022; Meloro, 2022; Van Valkenburgh, 1989).
Across geographic regions, terrestrial carnivoran communities are
known to display an increase in trophic diversity in habitats charac-
terized by higher temperatures and precipitation given the increased
biodiversity and ample availability of dietary options in those areas,
including fruits, seeds, nuts, and a diverse array of invertebrates
(Cruz et al., 2022; Ray & Sunquist, 2001; Zhou et al., 2011; Zuercher
et al., 2022). We may therefore expect a biogeographic trend in
which the dietary breadth of a carnivoran community is reflective of
dietary opportunity; however, carnivoran dietary traits have yet to
be explored in an ecometric framework.

Carnassial teeth are an identifying feature of terrestrial carniv-
oran dentition and include the first mandibular molar (m1) and the
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fourth cranial premolar (P4) (Friscia et al., 2007; Tarquini et al., 2020;
Van Valkenburgh, 2007). The lower carnassial is composed of two
primary regions: the trigonid blade, which is instrumental in gnashing
and tearing, and the talonid basin, which is involved in grinding and
crushing food items (Friscia et al., 2007; Tarquini et al., 2020; Van
Valkenburgh, 1989). Carnassial teeth can display considerable mor-
phological variation associated with the dietary niche of the species
(Friscia et al., 2007; Tarquini et al., 2020; Van Valkenburgh, 1989).
The relative blade length (RBL) of the m1 carnassial tooth has been
widely used to assess carnivoran diets and is an easily recognizable
traitthatis frequently preservedin both modern and fossil specimens
(Balisi et al., 2018; Friscia et al., 2007; Holliday & Steppan, 2004;
Van Valkenburgh, 1989). The RBL measure assesses the length of
the trigonid blade relative to the overall m1 tooth length, thereby
representing the proportion of the tooth devoted to the cutting
blade. The RBL essentially represents the degree to which the car-
nassial tooth is modified for a carnivorous diet, signified by a well-
developed trigonid blade, or a less carnivorous diet with a larger area
devoted to the talonid basin (Davies et al., 2007; Friscia et al., 2007;
Van Valkenburgh, 1989). RBL varies across Carnivora from frugivo-
rous species, such as dwarf mountain coatis (Nasuella olivacea) who
have a minimal trigonid blade and a relatively large talonid basin with
an RBL value of 0.47 (Friscia et al., 2007), to obligate carnivores, such
as the mountain lion (Puma concolor) which, like all felids, have car-
nassial teeth that are entirely composed of the trigonid blade with an
RBL value of 1.0 (Van Valkenburgh, 1989).

Carnivoran communities vary geographically due to ecologi-
cal and evolutionary processes implicated in community assembly;
therefore, large geographic regions, such as continents, may be as-
sociated with differing ecometric patterns. Over the past few cen-
turies, carnivorans have also experienced massive shifts in their
geographic ranges due to habitat loss, expansion of urban areas,
purposeful extermination, and other anthropogenic disruptions,
factors which have disproportionately influenced large hypercarniv-
orous species, due in part to their extensive habitat requirements
(Di Minin et al., 2016; Fernandez-Sepulveda & Martin, 2022; Ripple
etal., 2014). Large carnivorans perform essential ecological roles and
are often characterized as keystone species; therefore, the eradica-
tion of these animals from community assemblages can have severe
consequences for ecosystem function (Gittleman & Gompper, 2005;
Ripple et al., 2014; Sih et al., 1998). The loss of large carnivorans
from community assemblages is also known to trigger an increase in
mesocarnivorous species inhabiting an area (Brashares et al., 2010;
Hoeks et al., 2020), thereby altering the community-wide trait dis-
tributions. These changes to carnivoran community assemblages
have been experienced more acutely in certain global regions as-
sociated with heightened levels of agriculture and human popula-
tion density (Ripple et al., 2014; Wolf & Ripple, 2017). For example,
large carnivorans have been fully extirpated in regions of the eastern
United States and Europe and are at heightened risk of extinction in
southeast Asia (Dalerum et al., 2009; Wolf & Ripple, 2017). Certain
mid-sized carnivorans (e.g., red fox, Vulpes vulpes; common rac-

coon, Procyon lotor) have expanded their geographic ranges in these
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regions (Bateman & Fleming, 2012) and changed the overall struc-
ture of these carnivoran assemblages. Therefore, turnover in carniv-
oran community assemblages can be reflective of climatic conditions
as well as human disruption.

Here, we leverage one aspect of terrestrial carnivoran dental
morphology, namely carnassial relative blade length (hereafter RBL),
to test whether there is a trait-environment relationship at the com-
munity level by developing ecometric models of temperature and
precipitation. We expected regions with higher precipitation to
support greater availability and variety of dietary items and there-
fore to be associated with a greater variation in community-wide
dietary traits, whereas we expected regions with low precipitation
to support fewer diet types and to have reduced trait variation with
mean trait values primarily associated with carnivorous behav-
iors. Additionally, we expected that temperature may be related to
community-level dietary trait values in carnivorans because prey
composition and prey environment vary with temperature. We cali-
brated ecometric models for each continent to investigate whether
ecometric relationships hold across different large geographic re-
gions that have different climate compositions and that have also
recently experienced different amounts of carnivoran loss. We ex-
pected the strongest overall relationships to be associated with re-
gions with the most variation in precipitation (e.g., Asia and South
America) and temperature (e.g., Asia and North America) and the
weakest relationships to be associated with areas with greater hab-
itat loss (e.g., Europe). Finally, we evaluated functional trait shifts
associated with seven North American paleocommunities to assess
whether this relationship holds through time despite carnivoran ex-
tirpations and extinctions. We expected paleocommunities associ-
ated with drier conditions to display less variation in dietary traits
and to have mean trait values more strongly associated with carniv-
orous dietary habits as compared to modern communities found in
the same localities in wetter conditions, which may have a greater

diversity of dietary options.

2 | METHODS
2.1 | Study system and functional trait

Carnivorans represent an ecologically diverse mammalian order of
252 extant terrestrial species (IUCN, 2020). Terrestrial carnivorans
are native to five continents worldwide (apart from Antarctica and
Australia) and can be found in nearly every global ecoregion across
a range of temperature and precipitation gradients (Arias-Alzate
et al., 2020; Van Valkenburgh, 2007; Wilson & Mittermeier, 2009).
Whereas certain species may be highly adapted for life in extreme
habitats such as deserts (e.g., fennec fox, Vulpes zerda, sand cat, Felis
margarita) or tundras (e.g., Canada lynx, Lynx canadensis, polar bear,
Ursus maritimus) (Ripple et al., 2014; Wilson & Mittermeier, 2009),
some carnivorans display generalized habitat requirements and may
flourish in any number of ecosystems including human-dominated
landscapes (e.g., red fox, Vulpes vulpes, raccoon, Procyon lotor;
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Bateman & Fleming, 2012; Gehrt et al., 2010). Carnivorans also per-
form a variety of roles within their communities that help to maintain
ecosystem function, including as large apex predators that act as top-
down community regulators as well as smaller mesocarnivores that
act as predators, competitors, and seed dispersers (Dalerum, 2013;
Prevosti & Pereira, 2014; Roemer et al., 2009).

To assess the functional dietary traits of terrestrial carnivorans,
we compiled the relative blade lengths (RBL) of the mandibular m1
tooth for 223 of 252 non-domesticated extant terrestrial carnivoran
species as reported by the IUCN (IUCN, 2020) (Figure 1c). These
measures were recorded from the existing published literature as
well as from direct measurements (using complete mandibles) col-
lected within the National Museums of Kenya (Nairobi, Kenya) using
digital calipers. In some cases, we also measured the RBL from spec-
imen photos with Fiji software version 2.3.0 (Schindelin et al., 2012)
using specimen images from natural history collections that were
published in the literature (e.g., Christiansen, 2009; Lariviére, 2001;
Morales & Giannini, 2010, Nellis, 1989; Tellaeche et al., 2018; Van
Rompaey, 1988; Van Rompaey & Colyn, 1992; n=7), had been pre-
viously photographed in a museum collection (n=3), or were avail-
able online through museum collections (e.g., Animal Diversity Web;
Myers et al., 2024; n=2) (Appendix S1). When possible, measures
were collected from a minimum of five specimens (including males
and females) to calculate the mean RBL for each species. We did not
measure any specimens with damaged or broken carnassial teeth or
specimens from immature individuals (assessed using cranial sutures

and tooth eruption patterns).

2.2 | Ecomorphological analyses

Previous work has documented an ecomorphological signal in the
trait variation of RBL (Friscia et al., 2007; Tarquini et al., 2020; Van

(a) Relative blade length (RBL) =

(b) MIL Y (c)

MIL

POV, w A -';

Valkenburgh, 1989). As a preliminary analysis, we assessed whether
that signal is present in the dataset we assembled to test whether
biological processes are drivers of our findings rather than statisti-
cal artifacts. We tested whether RBL variance is explained by two
aspects of the carnivoran diet: the percent of vertebrate prey items,
as reported in Elton Traits 1.0 (Wilman et al., 2014), and dietary di-
versity. To estimate dietary diversity, we calculated the number of
diet categories that composed at least 10% of the diet of each spe-
cies including vertebrate prey, invertebrate prey, fruits, plant mate-
rial, seeds, and scavenged materials (following Wilman et al., 2014).
To evaluate the relationship between RBL, percent vertebrate prey,
and dietary diversity, we conducted Phylogenetic Generalized Least
Squares (PGLS) using the carnivoran phylogeny from Nyakatura and
Bininda-Emonds (2012).

2.3 | Community-level data
We assembled species lists by overlaying IUCN range maps
(IUCN, 2020) with a set of points sampled equidistantly at 50km
across the terrestrial globe (excluding Antarctica and Australia)
resulting in 50,994 community sampling points (Polly, 2010). We
limited our dataset to areas with a minimum of three carnivoran
species with RBL trait measures, which left us with 48,757 global
communities, including 11,835 communities in Africa, 17,162 com-
munities in Asia, 3817 communities in Europe, 8948 communities
in North America, and 6995 communities in South America. Any
taxonomic discrepancies between the published literature, the ASM
Mammal Diversity Database (Mammal Diversity Database, 2023),
and the IUCN range maps (IUCN, 2020), were resolved based on the
Integrated Taxonomic Information System (ITIS, 2023).

To test whether there is a relationship between community-level

RBL traits and climate, we sampled annual precipitation (AP, mm)

blade length (BL)
M1 length (M1L)
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and mean annual temperature (MAT, C) at the geographic location
of every community in our dataset from interpolated global environ-
mental data sourced from weather stations at a resolution of 1km?
(Fick & Hijmans, 2017). We log transformed annual precipitation
because ecologically relevant variation in small precipitation values
is underemphasized in standard deviation calculations compared to

large precipitation values.

2.4 | Ecometric analyses

We calculated the mean and standard deviation of the RBL trait for
each community within our dataset and organized those data into a
25x 25 gridded ecometric space (625 ecometric bins total) following
Lawing & Polly (2012) and Vermillion et al. (2018). We used a maxi-
mum likelihood framework to separately fit trait models with AP
and MAT (Figure 4). This method has been shown to produce more
accurate estimates than other statistical approaches to fitting eco-
metric models (Short et al., 2021). For each individual ecometric bin,
we created a likelihood surface using a Gaussian kernel smoother to
estimate the distribution and fit of the environmental values of all
the communities within the bin. We then extracted the most likely
environmental value from the peak of the likelihood surface. We
evaluated the fit of the trait-environment relationship by comparing
the estimated environmental values to the observed environmental
values by calculating the coefficient of determination (R?).

To test whether the estimated to observed environment cor-
relation is spurious, we shuffled the estimated environments and
compared those environments to the observed environments with
the coefficient of determination. For a second test, we randomly
assigned communities to an ecometric bin, recalculated the max-
imum likelihood value of the environment for all of the newly as-
signed communities within the bin, and compared those estimates
to the observed values with a coefficient of determination. We
repeated both procedures 100 times and compared the distribu-
tion of correlations generated from the randomization procedures
with the original correlation between the estimated and observed
environments. In addition, we calculated the anomaly between
the observed and estimated environments for every community
and mapped the anomalies in geographic space to investigate spa-
tial patterning. We conducted this procedure for all communities
globally and repeated these steps for the communities associated
with each continent.

We assessed the validity and transferability of the RBL ecom-
etric model with a series of sensitivity analyses following Schap
et al. (2024). We randomly down-sampled communities with sam-
ple sizes ranging from 100 to 9100 communities at intervals of
1000 to test various sample sizes across the full range of sample
sizes while limiting the total number of required iterations, and
we repeated this procedure 20 times to obtain a range of vari-
ation associated with the different sample sizes. For each down

sample, we used a randomly drawn 80% of the data to train an
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ecometric model and the remaining 20% for testing. The final RBL
ecometrics model was fit using all communities, which is above
the number of communities needed to accurately capture the RBL

trait-environment relationship.

2.5 | Paleoenvironmental reconstruction

We used the carnivoran RBL trait to reconstruct paleoenvi-
ronmental conditions and assessed the trends associated with
seven North American fossil sites from the Last Glacial Maximum
(~40,000 to 10,000years ago). These sites included Anderson Pit,
Indiana (Richards, 1972), Brynjulfson Cave 1, Missouri (Parmalee
& Oesch, 1972), Friesenhahn Cave, Texas (Graham, 1976),
January Cave, Alberta (Burns, 1991), Little Box Elder Cave,
Wyoming (Anderson, 1968; Long, 1971), McKittrick, California
(Jefferson, 1991), and New Trout Cave, West Virginia (Grady, 1986).
The carnivoran species associated with these sites were extracted
from the Neotoma Paleoecology Database (https://www.neoto
madb.org) and were previously used in ecometric studies by Polly
etal.(2017). Using these species lists, we compiled RBL values for the
assemblages reported from each fossil site. We compiled additional
RBL measures for extinct species (n=3) by measuring specimen
images from the published literature (Christiansen & Harris, 2009;
Reynolds et al., 2023; Sorkin, 2006).

To reconstruct the paleoenvironments associated with the fos-
sil sites, we calculated the mean and standard deviation of the RBL
trait for each fossil community. We used the means and standard
deviations from the fossil sites to explore the temperature and pre-
cipitation estimates of these areas based on the global ecometric
models fitted using the modern carnivoran communities (Polly &
Head, 2015; Schap et al., 2021; Schap et al., 2024; Short et al., 2021,
2023). To determine how community trait distributions temporally
shifted, we extracted mean and standard deviation values of the
modern carnivoran communities currently inhabiting the locations
associated with each fossil site. Unless otherwise noted, all analyses

were conducted in R version 4.2.3 (R Core Team, 2023).

3 | RESULTS
3.1 | Relative blade length

Relative blade lengths varied across species from 0.41 for
Humboldt's hog-nosed skunk (Conepatus humboldtii) to 1.0 for the
felids (Figure 1). This variation was associated with diet, where
higher RBL values are associated with a higher percent of vertebrate
prey in the diet (Figure 1d). Although RBL has a high phylogenetic
signal (Pagel's lambda=0.97) (Figure 2), PGLS analyses indicate that
14% of the variation in species-level RBL is explained by both per-
cent vertebrate prey in the diet (R?=.14; p=.02) and dietary diver-
sity (R%=.14; p=.03).
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3.2 | Geographic trait variation
Community mean RBL ranged from 0.53 to 0.94 worldwide with

a standard deviation of 0.15 (Table 1), where the highest values
were most apparent in arid regions, such as the Atacama Desert of

% Vertebrate Prey i .|
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[ Ailuridae  [llFelidac

. Canidae

[ Eupleridac Il Hyaenidae [ Nandiniidae [ Ursidae

-Mephitidae -Prionodontidae .Viverridae

.Herpestidae .Mustelidae .Procyonidae

western South America, the central Sahara Desert of Africa, and
the desert region of southwestern and central Asia (Figure 3a). Low
mean RBL values were found throughout most of the Holarctic re-
gion of North America and Europe as well as northern and eastern
Asia (Figure 3a). Certain geographic regions were also associated

FIGURE 2 Phylogeny of carnivorans
included in the dataset, pruned from
Nyakatura and Bininda-Emonds (2012).
Tree tips are color-coded based on the
percentage of vertebrate prey in the
species diets as reported in Elton Traits
1.0 (Wilman et al., 2014). The outer
ring indicates the taxonomic families
represented on the phylogeny.

Localities N Min RBL MaxRBL  Mean RBL (o)
Global 48,757 0.53 0.94 0.72(0.15)
Africa 11,835 0.64 0.88 0.75(0.14)
Asia 17,162 0.55 0.87 0.72(0.14)
Europe 3817 0.63 0.79 0.69 (0.11)
North America 8948 0.53 0.83 0.68(0.13)
South America 6995 0.61 0.94 0.76 (0.20)

TABLE 1 Results of the ecometric

R? R?

(MAT) (AP) models.
.53 49

.10 .59

.52 .66

.36 46

71 45

.67 .64

Note: For each geographic region, we are reporting the number of carnivoran communities (N)

that include a minimum of three species traits, as well as the minimum (min), maximum (max),

mean, and standard deviation (¢) of the RBL trait for each region and the R? associated with the
observed to expected climatic models for mean annual temperature (MAT) in Celsius (C) and annual

precipitation (AP) in millimeters (mm).
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with a high degree of within-community trait variation, including
tropical regions, such as most of South and Central America as
well as portions of southeast Asia (Figure 3b). Low trait variation
was noted in desert regions of northern Africa and portions of
western Asia (Figure 3b).

3.3 | Modern carnivoran communities

Global patterns of observed precipitation were associated with our
model estimates of expected precipitation (R>=.49, p<.001) and
temperature (R?=.53, p<.001). The relationship associated with

FIGURE 3 Geography of carnivoran
community RBL traits. Maps were created
by sampling carnivoran communities
composed of a minimum of three species
traits at 50-km point intervals. Areas

in white indicate regions that have

fewer than three carnivoran species

per community. (a) Mean carnivoran
community RBL. (b) Standard deviation in
carnivoran community RBL.

(a)

(b)

FIGURE 4 Ecometric model associated
with global annual precipitation in
millimeters natural log-transformation
(AP). (a) Observed AP (Fick &

Hijmans, 2017). (b) Estimated global AP
based on carnivoran RBL. (c) Ecometric
space associated with carnivoran
community RBL mean (x-axis) and
standard deviation (y-axis), color-coded
based on the maximum likelihood estimate
of AP in each grid cell. Each grid cell in the
ecometric space indicates communities
associated with a specific RBL mean

and standard deviation. (d) Anomaly

map representing geographic regions in
which precipitation was overestimated

or underestimated. An overestimate
(blue) corresponds to a model-based
estimate that is wetter than the observed
precipitation, while an underestimate
(red) corresponds to a model-based
estimate that is drier than the observed
precipitation.
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precipitation largely persisted across geographic regions, where the
smallest amount of explained variance was in North America and
Europe (R?=.45, p<.001 and R?= .46, p<.001, respectively) and the
largest amount of explained variance was in Asia and South America
(R?=.66, p<.001 and .64, p<.001, respectively) (Table 1; Figure 4;
Figures S1 and S2). The strength of the relationship associated with
temperature varied greatly by geographic region, such that North
America was associated with a relatively high amount of explained
variance (R2=.71, p<.001) and Africa was associated with a limited
amount of explained variance (R*=.10, p<.001) (Table 1; Figure 5).
Randomization procedures demonstrate that these relationships are

not spurious (Figures S3-S6).

RBL Mean

. 0.95

0.75

. 0.55

RBL
Standard deviation

0.2

(c)
Precipitation (log,(mm)) l
0o 2

0.3

Mean

Precipitation
Anomaly
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Temperature (C) “
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0.3

0.94

FIGURE 5 Ecometric model associated
with global mean annual temperature
(MAT). (a) Observed MAT (Fick &
Hijmans, 2017). (b) Ecometric space
associated with carnivoran community
RBL mean (x-axis) and standard deviation
(y-axis), color-coded based on the
maximum likelihood estimate of MAT

in each grid cell. Each grid cell in the
ecometric space indicates communities
associated with a specific RBL mean

and standard deviation. (c) Estimated
global MAT based on carnivoran RBL. (d)
Anomaly map representing geographic
regions in which community RBL was
overestimated or underestimated. An
overestimate (blue) corresponds to a
model-based estimate that is warmer

The highest community-wide RBL variation occurred in South
America, Africa, and Asia (standard deviations of 0.20, 0.14, 0.14,

respectively), where the greatest amount of explained variance

between observed and expected precipitation occurred (R*=.64,
p<.001, R?=.59, p<.001, R?=.66, p<.001, respectively) (Table 1).
In South America specifically, the RBL ratios ranged from 0.61 to
0.94, which is similar to values of the global sample, where global
RBL ratios range from 0.53 to 0.94. In Europe, the precipitation
model was less predictive (R®=.46, p<.001), and the RBL ratios
ranged from 0.63 to 0.79 (Table 1).

The greatest amount of explained variance between observed and
expected temperature occurred in North America, South America, and
Asia (R*=.71, p<.001, R?=.67,p<.001, R?>=.52, p<.001, respectively)
(Table 1), geographic regions that are associated with the greatest vari-
ation in temperature (standard deviations of 123, 63, and 135, respec-
tively). The lowest amount of overall explained variance occurred in
Africa (R?=.10, p<.001) (Table 1), a geographic region that is associ-
ated with the least variation in temperature (standard deviation of 36).

The ecometric trait space associated with both annual precipitation
and mean annual temperature was most strongly differentiated by trait
standard deviation (Figures 4c and 5c). In wetter and hotter conditions,
we find greater RBL standard deviation, indicating a wider variety of
diets exploited by the community; whereas, in drier and more temper-
ate conditions, we find less variation in the RBL trait, indicating a nar-
rower breadth of dietary function. Both low and high mean RBL trait
values are associated with an array of precipitation and temperature
regimes; however, only wet conditions are associated with the lowest
mean RBL values. Given that wetter habitats are associated with a
high standard deviation and relatively low mean RBL trait values, this

Temperature than the observed temperature, while
ﬂrz?ly an underestimate (red) corresponds to a
model-based estimate that is colder than
20 the observed temperature.
0
-20
B 0

indicates that high precipitation areas can support carnivoran commu-

nities that include species with relatively minimal carnivorous habits.

3.4 | Fossil carnivoran communities

We estimated paleoclimate conditions for North American fossil
sites associated with the Last Glacial Maximum (Table 2; Figure 6).
McKittrick, Little Box Elder Cave, and Friesenhahn Cave were all pre-
dicted to have been wetter (by 211, 386, and 590mm, respectively)
and hotter (by 9.02, 21.03, and 3.31°C, respectively) than modern
conditions (Table 2). Over this time, McKittrick and Little Box Elder
Cave shifted from predominantly forested habitats (coniferous and de-
ciduous) to modern grasslands (Little Box Elder Cave Anderson, 1968;
Long, 1971; McKay, 2008) or xeromorphic shrublands (McKittrick;
Jefferson, 1991), while Friesenhahn Cave has primarily remained
a grassland (Graham, 1976; Hall & Valastro Jr, 1995). The mean and
standard deviation of the RBL trait also decreased at these sites as
the habitats shifted to drier conditions. These changes were associ-
ated with a loss of hypercarnivorous species including saber-toothed
cats (Smilodon fatalis) from Friesenhahn Cave and McKittrick, scimitar-
toothed cats (Homotherium serum) from Friesenhahn Cave, and
American lions (Panthera atrox), mountain lions (Puma concolor), and
gray wolves (Canis lupus) from Little Box Elder Cave.

New Trout, Brynjulfson, and January Caves were all pre-
dicted to have been drier (by 379, 165, and 355mm, respectively)
than modern conditions, with relatively stable temperatures,
where modern conditions were predicted to have been margin-

ally warmer in New Trout and Brynjulfson Caves (by 1.11 and
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FIGURE 6 Fossil site paleo-precipitation reconstructions for seven paleocommunities including, (1) January Cave, (2) Little Box

Elder Cave, (3) Brynjulfson Cave 1, (4) Anderson Pit, (5) New Trout Cave, (6) McKittrick, and (7) Friesenhahn Cave. (a) Observed annual
precipitation millimeters natural log-transformation (AP). Fossil sites are numbered and indicated as black circles. (b) Trait turnover of RBL
at each fossil site represented in ecometric space. (c) Observed mean annual temperature (MAT). Fossil sites are numbered and indicated as
black circles. (d) Trait turnover of RBL at each fossil site represented in ecometric space. Ecometric space is based on the RBL and maximum
likelihood estimate of AP, where each grid cell represents communities that display a given RBL mean and standard deviation and are color-
coded based on the maximum likelihood estimate of AP or MAT. Paleocommunities are represented in the ecometric space as numbered
circles and arrows indicate the ecometric space inhabited by the modern communities located in the same geographic location.

6.12°C, respectively) and marginally cooler at the January Cave
site (by 5.17°C) (Table 2). These estimations align with expecta-
tions as New Trout and Brynjulfson Caves have likely shifted from
boreal forests to cold deciduous forests (Mead & Grady, 1996;
Overpeck et al., 1992) and January Cave has likely shifted from
coniferous tundra to a subpolar evergreen habitat (Burns, 1991).
The community-wide mean RBL for these sites remained roughly
constant over time, whereas the standard deviation increased
as the conditions became wetter. Over time, the New Trout and
Brynjulson Cave communities lost obligate carnivores (Table S1),
including dire wolves (Canis dirus) and bobcats (Lynx rufus) but
gained mid-sized mesocarnivores, such as gray foxes (Urocyon
cinereoargenteus) and eastern spotted skunks (Spilogale putorius).
Likewise, January Cave gained both obligate carnivores, such as
bobcats (Lynx rufus) and Canada lynx (Lynx canadensis), as well as
dietary generalists, including American black bears (Ursus ameri-
canus) and striped skunks (Mephitis mephitis).

Anderson Pit is predicted to have been drier (1015mm) and
colder (28.6°C) than modern conditions (Table 2). Limited informa-
tion is available about the paleohabitat associated with this site,
although it may have been similar to the present deciduous for-
est associated with the modern location (Smith & Polly, 2013). The
mean and standard deviation of the RBL trait increased at this site

as this community gained obligate carnivores, such as bobcats (Lynx

rufus), and mid-sized generalists, such as red foxes (Vulpes vulpes).

4 | DISCUSSION

Carnivoran dietary morphology represented by lower carnassial rela-
tive blade length (RBL) at the community level is associated with the
climates in which carnivoran communities occur; thus, RBL provides
some information about the climate inhabited by carnivorans (Figures 4
and 5). These ecometric models can be used to estimate paleoclimate,
and the corresponding ecometric space provides a way to assess and
visualize community-level functional trait shifts. Given the variety of
habitats and geographic regions that carnivoran communities occupy,
the variation in their dietary niches, and the extensive preservation of
lower carnassial teeth in the fossil record, carnivoran dietary traits are
good candidates to form the basis of ecometric models.

4.1 | Carnivoran diets

Carnivoran dental traits are related to dietary diversity and the
percent of vertebrate prey in the diet. In our preliminary analyses,
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species whose diets are more strongly associated with vertebrate
prey, display higher RBL values and those with more diverse diets,
display lower values (Figure 1), relationships that each explained
roughly 14% of the variation in species-level RBL traits. This percent
of explained variation is due, in part, to the flexibility in many car-
nivoran diets. Even species with limited dietary diversity may con-
sume items outside of their normal habits as opportunity or need
arises (Cruz et al., 2022; Metz et al., 2024; Middleton et al., 2021).
Diets may also shift in response to changes in resource availability
or community composition. For example, the loss of apex predators
may change the resource acquisition behaviors of the mesocarni-
vores in a community (Karlin, 2017; Prugh et al., 2009). Regardless
of this dietary flexibility, the RBL trait provides a proxy for diet, even

when dietary behavior is not observable (e.g., paleocommunities).

4.2 | Variations of traits and climates

We found greater community-wide trait variation in areas with
higher precipitation and temperature, where there is a greater va-
riety of dietary items. For example, a community located in the
Amazonian rainforest had 46% more trait variation as one located in
the Saharan desert (6=0.24 and 0.15, respectively, Figure 3b). The
diet composition of these communities varied in association with our
expectations, where the diets of the desert community were primar-
ily composed of vertebrate prey, with minimal deviations (x = 82 %
vertebrate prey; 6=17) and the diet of the rainforest community
was less closely tied to strictly carnivorous behaviors (x = 63 % ver-
tebrate prey; 6=41%). Notably, both communities were composed
of eleven carnivoran species, suggesting that this increase in trait
variation is not simply a function of increased species richness within
the rainforest. In fact, although the highest levels of annual precipi-
tation are associated with South America, the greatest species rich-
ness is associated with Africa. However, Africa (x =14.41 species;
0=6.56) and South America (x =13.06 species; 6=4.07) have similar
community species richness, suggesting that there is no systematic
difference between the richness of these regions.

The ecometric relationship between dietary traits described here
differs from the relationship associated with carnivoran locomotor
traits. While Polly (2010) found that carnivoran locomotor traits
were related to temperature, but not precipitation, we found a rela-
tionship of observed and expected environments constructed using
carnivoran dietary traits for both precipitation and temperature.
Similarly, in an ecometric analysis focused on overall carnivoran cra-
nial shape, a trait which is also indicative of carnivoran diet, Meloro
and Sansalone (2022) also found a relationship associated with both
precipitation and mean annual temperature. Tseng & Flynn (2018)
showed that herbivorous carnivorans were more common in areas
with high precipitation and suggested an ecomorphological rela-
tionship where these species were more arboreal. Carnivoran post-
cranial morphology has been linked with diet (lwaniuk et al., 1999),
where carnivoran species with more herbivorous diets have been

associated with arboreal locomotor styles (Dumont et al., 2016;
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McNab, 1995). Given that carnivoran locomotor traits have been
less effective at predicting patterns of precipitation than the di-
etary traits presented here, we suggest that the increased RBL trait
variation in high precipitation areas is likely related to the greater
biodiversity in these areas, allowing for wider dietary opportunity.
Notably, Polly (2010) also identified vegetation cover as a major fac-
tor associated with carnivoran locomotor traits, a factor that is also
likely to be tied to dietary opportunity. Future studies should inves-
tigate the relationship between carnivoran dietary traits and vegeta-
tion cover as well as the potential predictive power of an integrative
model incorporating both carnivoran dietary and locomotor traits.
Interestingly, because of the relationship with precipitation
trends, the carnivoran dietary ecometric relationship is similar to
the dietary ecometric trends of small herbivorous mammals (ro-
dentsandlagomorphs; Schapetal., 2021, Schapetal.,2024), hoofed
mammals (artiodactyls and perissodactyls; Eronen, Puolaméki,
et al., 2010; Fortelius et al., 2002; Fortelius et al., 2016; Short
et al., 2021; Zliobaite et al., 2018), and the combined communi-
ties of small and hoofed herbivorous mammals (Short et al., 2021).
Dental traits of small herbivorous mammals (Schap et al., 2021;
Schap et al., 2024) as well as ungulates and primates (Oksanen
etal.,2019) have also been linked to temperature in North America.
In small mammals and hoofed mammals, tooth crown height (i.e.,
hypsodonty) was used as a climate proxy (Damuth & Janis, 2011;
MacFadden, 1997; Stirton, 1947; Stromberg, 2002; Webb, 1977),
where a higher crown is indicative of the airborne grit and dust that
is consumed in an open, arid environment (Damuth & Janis, 2011;
Damuth & Janis, 2014; Janis, 1988; Jardine et al., 2012; Jernvall &
Fortelius, 2002; Semprebon et al., 2019; Williams & Kay, 2001), as
well as the silica present in arid-adapted plants (Erickson, 2014;
Merceron et al., 2016; Strémberg, 2002). While hypsodonty re-
flects the tooth's ability to withstand abrasive dietary materials
(Damuth & Janis, 2011; Kaiser et al., 2013), the carnivoran tooth
morphology examined here is instead related to the relative ability
to either slice or grind dietary items (Friscia et al., 2007; Tarquini
et al., 2020; Van Valkenburgh, 1989). A lower carnassial tooth with
a well-developed trigonid blade allows for a scissor-like slicing mo-
tion, which is highly effective for hypercarnivorous diets, whereas
a lower carnassial tooth with more grinding space associated with
a larger talonid basin allows an animal to process a variety of di-
etary items more strongly associated with frugivory or herbivory
(Davies et al., 2007; Friscia et al., 2007; Van Valkenburgh, 1989).
Therefore, the carnivoran dental morphology measured here is
reflective of the vast dietary breadth represented by the order,
which provides a different type of information than the dietary
traits of strictly herbivorous guilds. While an herbivorous diet is
intricately tied to primary productivity, the diet of a carnivoran
community is reflective of the dietary opportunity available in the
ecosystem and therefore may indicate the biodiversity of the area.
Carnivoran communities located in less biodiverse regions may
have fewer dietary options (e.g., exclusively small vertebrate prey)
and therefore display reduced dietary breadths, whereas com-
munities located in highly biodiverse regions may display wider
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dietary breadths associated with the varied dietary options. The
fact that dietary ecometrics are strongly or moderately related to
precipitation for both herbivorous and carnivorous groups sug-
gests that this may be a useful relationship for other guilds in the
future.

4.3 | Carnivoran range loss

The geographic ranges inhabited by carnivoran species have shifted
dramatically over the past century, leading to range contractions in
many carnivoran species and range expansions in certain mesocar-
nivores (Di Minin et al., 2016; Fernandez-Sepulveda & Martin, 2022;
Ripple et al., 2014). In an evaluation of carnivoran locomotor eco-
metric models, Polly & Head (2015) noted the tremendous loss of
functional trait diversity that has occurred across carnivoran com-
munities during the Anthropocene and the pronounced effects on
the fit of these models related to carnivoran extirpations. Conversely,
our model successfully recovers RBL as an ecometric even with dras-
tic recent losses and shifts within carnivoran ranges, indicating that
partial disassembly of carnivoran communities has not completely
removed the signal of this trait-environment relationship. These re-
sults follow the findings of Polly and Sarwar (2014), which indicate
that species losses representing less than 25% of fauna may add
uncertainty to ecometric models but do not influence the overall
proportion of explained variance detected by those models. Future
studies should evaluate carnivoran dietary ecometric models over
the past several centuries, with a particular interest in whether the
strength of these models improves when constructed using historic
geographic range data.

4.4 | Geographic and continental trends

We document a relationship between carnivoran dental traits and
climatic variables, where global patterns of observed precipitation
and temperature corresponded with our model estimates (R?=.49
and R?=.53, respectively). These trends largely persisted across
geographic regions; however, we did detect regional variations in
the strength of these relationships (Table 1; Figures S1 and S2). This
variation in model strength across geographic regions may suggest
that future ecometric analyses may also benefit from this regional
approach. This supports the recent recommendations of Wilson
et al. (2023), which reported flaws in global ecometric models given
the regional variations in traits and environments.

Europe had the weakest combined ecometric relationships for
precipitation (R?=.46) and temperature (R>=.36) and also displayed
the lowest mean RBL values (0.69) and the least amount of trait
variation (6=0.11) as compared to the other continents. This may
be related to the dramatic depletion of carnivorans across Europe,
which has left the communities with predominantly generalist spe-
cies (Dalerum, 2013; Dalerum et al., 2009; Wolf & Ripple, 2017).
Although the model still functions within Europe, the fact that it

is the least predictive geographic region may help to support the
critical importance of carnivorans to their communities and it may
portend poorly for the functionality of other communities in the
face of future climate scenarios and the continued loss of other car-
nivores worldwide. This may also provide further support for the
strength of this trait-environment relationship and the utility of this
ecometric model as a potential predictor of geographic regions at
risk of ecological disruption as indicated by mismatches of the trait-
environment relationship.

Overall, the weakest relationship between observed and
expected environments was associated with mean annual tem-
perature in Africa. Notably, similar trends have been detected in
ecometric models exploring the dietary traits of rodent communi-
ties (Schap et al., 2024). Africa is associated with a limited range
of community-wide RBL trait values, the hottest temperatures,
and the narrowest range in temperature values compared to other
continents. The combination of limited variation in both trait and
environment may limit the performance of the ecometric model
in this region. Comparatively, North America is associated with
a wider spread of community-wide RBL values and the greatest
range in temperature and also showed the greatest amount of ex-
plained variance between observed and expected mean annual
temperature (R?>=.71).

The models performed moderately well on a global scale, al-
though it under- and over-predicted precipitation and tempera-
ture of certain geographic regions based on community-wide RBL
values (Figure 4c,d). For example, the topographic complexity as-
sociated with the Himalayan Mountains in Asia is associated with
precipitation anomalies north and south of the range. South of the
Himalayas, the model under-predicts the precipitation of the re-
gion. Whereas, north of the Himalayas and into the Gobi Desert,
the model has predicted higher than expected levels of annual pre-
cipitation. Likewise, the Himalayan Mountain region is associated
with an under-prediction of temperature. Regions of the Saharan
Desert in Africa were also largely under-predicted in the precipita-
tion model, although certain regions within the Sahara Desert are
over-predicted. Precipitation was also under-estimated in wet re-
gions, like the southeastern United States. Such underestimations
are consistent with those found in herbivore-based ecometric re-
search (Short et al., 2021; Short & Lawing, 2021) and are likely to
be at least partially related to the maximum likelihood function used
to estimate precipitation and temperature, which assigns the most
likely data values within each trait bin and can therefore miss the
most extreme values. These findings may also be related to the loss
of omnivorous species like the eastern spotted skunk (Spilogale puto-
rius; Gompper & Hackett, 2005). Omnivorous species are dietary
generalists (relative to other species like obligate carnivores), and
they are therefore well-adapted to the wider variety of food items
that are characteristic of higher-precipitation areas. Thus, the loss
of omnivores in the southeastern United States would reduce the
prevalence of functional traits that are adapted to the region's wet
conditions, leading to the observed ecometric underestimations of
precipitation.
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4.5 | Paleoclimate predictions

Our model functioned as a paleoclimate indicator, although with-
out known temperature and precipitation values from the paleoen-
vironments, it is difficult to fully validate these predictions. We
ascertained the climatic trends of these regions by assessing our
predicted paleoclimates in comparison to reconstructions of domi-
nant vegetation communities for each of these sites. There are
a variety of methods for reconstructing paleoclimates (e.g., iso-
tope analyses, phytoliths, and pollen and faunal records), however,
these techniques are site-specific, and these data are not available
for all fossil sites (Eiler, 2011; Rashid et al., 2019; Sun et al., 2020).
Ecometric approaches to paleoenvironmental reconstruction can
be robust given that these techniques can create global models
that can be used to estimate a broad range of paleoenvironments
given trait-environment relationships and known community assem-
blages (Vermillion et al., 2018). Determining carnivoran assembly
within paleo-communities can provide a challenge given that many
carnivoran species maintain small population sizes and may there-
fore be underrepresented in the fossil record. Carnivoran assembly
may also be influenced by a variety of factors, including, but not
limited to climate. For example, the loss of megaherbivores during
the Late Pleistocene was likely to have had a direct influence on
large apex carnivores (Galetti et al., 2018; Ripple et al., 2015). The
paleoclimates predicted within our model largely conformed to our
expectations given the vegetation communities supported in these
regions. However, we encourage future studies to further validate
these models by conducting site-specific comparisons between eco-
metric reconstructions and other paleoenvironmental reconstruc-
tion techniques and by further considering changes beyond climate
that might influence carnivoran community assembly. The current
models were designed to address the major components of climate
(temperature and precipitation), although a variety of additional fac-
tors may also influence these relationships including seasonality, fire
regimes, and megaherbivore extinctions.

Each of the paleo-sites included in our study was associated
with the Last Glacial Maximum during the Pleistocene. This time
period is notable given that it is associated with a massive loss of
carnivoran species, particularly in Europe, South America, and North
America, where all of our paleo-sites were located (Dalerum, 2013;
Dalerum et al., 2009; Wolf & Ripple, 2017). Given the extreme RBL
values associated with felids, the loss of several felid species (e.g.,
Smilodon fatalis and Homotherium serum) is reflected in the reduction
of mean RBL values associated with McKittrick, Friesenhahn Cave,
and Little Box Elder Cave, fossil sites that had previously displayed
the highest mean RBL values. Correspondingly, each of these sites
also displayed the greatest loss in trait variation over this time, again
reflecting the loss of community members with high RBL values. Our
model therefore predicted a reduction in precipitation and tempera-
ture at these specific locations compared with modern communi-
ties, given that warmer, wetter communities were associated with
higher community-wide RBL mean and standard deviation. This
appears to conform to expectations given that these habitats have
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likely either remained similar (Friesenhahn Cave; Graham, 1976;
Hall & Valastro Jr, 1995) or have become more arid in modern times
as these sites have shifted from forested habitats (Little Box Elder
Cave and McKittrick; Anderson, 1968; Jefferson, 1991; Long, 1971,
McKay, 2008) to modern grasslands (Little Box Elder Cave) and xe-
romorphic shrublands (McKittrick). This trait turnover from fossil
sites to modern conditions may be informative as we look to future
projections of species losses associated with carnivorans and the
ways in which they may disrupt ecosystem functionality (Di Minin
et al.,, 2016; Ripple et al., 2014; Wolf & Ripple, 2017).

The ability of this model to reconstruct paleotemperatures may
have promising applications for the future given that previous dental
ecometrics using herbivorous mammal taxa have had limited utility
for temperature reconstructions (e.g., Fortelius et al., 2016; Oksanen
et al., 2019). However, the fact that several of our sites are predicted
to have been at least marginally warmer in the past (Friesenhahn
Cave, Little Box Elder Cave, January Cave, McKittrick) may suggest
that our precipitation predictions are robust.

4.6 | Conclusions

In conclusion, we show that community-level carnivoran dietary
traits are indicative of climatic conditions both worldwide and at
a continental level and that the relationship between carnivoran
dietary traits and environments can be used to hindcast paleocli-
mates. Ecometric techniques have previously been used to explore
the dietary traits of ungulates, rodents, and lagomorphs (Eronen
et al., 2010b; Fortelius et al., 2014; Schap et al., 2021; Zliobaite
et al., 2018) as well as the locomotor traits of ungulates and car-
nivorans (Polly, 2010; Short et al., 2023; Short & Lawing, 2021),
but this study represents the first attempt to explore carnivoran
dietary traits in this framework. Developing an understanding of
how functional traits relate to the environment can provide a pow-
erful window into our expectations of future change, which may
be of particular importance when examining a taxonomic group
that provides a pivotal contribution to ecosystem function and is
also on the precipice of large-scale species losses (Dalerum, 2013;
Prevosti & Pereira, 2014; Ripple et al., 2014; Roemer et al., 2009).
Understanding the relationship between carnivoran communities
and environmental conditions can provide a clearer understand-
ing of the factors that influence community assembly in this group.
These findings can inform paleoenvironmental reconstructions as
well as the impending responses of carnivorans to future projections
of climate change to help devise more effective conservation strate-

gies moving forward.
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