

1 ***Toxoplasma gondii* TgMIF mediates the transmigration of extracellular**
2 **parasites across the human placental barrier.**

3

4 Koen Brady Kleine¹, Guilherme De Souza¹, Lamba Omar Sangaré^{1*}

5 ¹Department of Biology, Texas A&M University, College Station, Texas, 77843

6 *Corresponding author.

7 Email: losangare@tamu.edu

8

9 **ABSTRACT**

10 The placenta is a critical biological barrier responsible for the healthy development of the fetus throughout
11 pregnancy. However, the eukaryotic intracellular parasite *Toxoplasma gondii* (*T. gondii*) can cross the
12 placental barrier by several mechanisms, including transmigration. Each year, approximately 190,000
13 infants are born worldwide with congenital infections caused by *T. gondii*, which can result in severe health
14 complications or even death. Unfortunately, the molecular mechanisms underlying these tragic outcomes
15 remain largely unclear, hindering the development of effective preventative strategies. To address this
16 knowledge gap, we have developed a human *in vitro* placental barrier using trophoblast stem cells to study
17 the transmigration of extracellular parasites across cellular tight junctions. Using this *in vitro* system, we
18 found that *T. gondii* macrophage migration inhibitory factor (TgMIF), a homolog of the human cytokine MIF,
19 mediates extracellular parasite transmigration across the cellular tight junctions. Notably, TgMIF, despite
20 lacking a signal peptide, is actively excreted by the extracellular parasites. We found that the TgMIF
21 expression varies across *T. gondii* strains and positively correlates with the strain's transmigration capacity.
22 Mechanistically, TgMIF distinctly induces the phosphorylation of extracellular signal-regulated kinase 1/2
23 and the dephosphorylation of focal adhesion kinase. These cellular modifications increase tight junction
24 permeability, enhance parasite localization at these junctions, and facilitate subsequent transmigration.
25 Furthermore, TgMIF mediates transmigration independently of the host MIF receptor CD74, indicating the
26 involvement of alternative receptors. Thus, our findings highlight TgMIF as a critical effector that could
27 mediate fetal infection in pregnant women via *T. gondii* transmigration across the placental barrier.

28

29

30 **INTRODUCTION**

31

32 A pregnant woman can become infected through food or water contaminated with *T. gondii* infectious forms
33 (cysts and oocysts)¹. Once inside the intestine, tachyzoites, the fast-replicative form, can rapidly
34 disseminate to distant organs via the so-called Trojan horse mechanism²⁻⁶, in which parasites use host
35 immune cells as a vehicle. In the pregnant mouse model, *T. gondii* is detected in the spleen and mesenteric
36 lymph nodes a few hours after infection, and in the maternal decidua 7 days post-infection. This suggests
37 dissemination through the maternal blood^{7,8}. In humans, this blood route is also supported by cases of
38 congenital infection, in which parasites are widely disseminated throughout all placental tissues⁹⁻¹³. What
39 is the structure of the human placental barrier?

40

41 The placenta has two interfaces that directly interact with the maternal decidua (anchoring villi) or with the
42 maternal blood (floating villi)^{14,15}. The floating villi are made of migratory extravillous trophoblast (EVT),
43 which anchors the placenta to the maternal decidua and remodels arteries to provide nutrient and oxygen-
44 rich blood to the fetus¹⁶. The syncytiotrophoblasts (STBs) form the floating villi; these multinucleated
45 epithelial cells are polarized, expressing microvilli at their apical surfaces. STBs are bathed in maternal

46 blood and have the largest surface area, which is critical for facilitating nutrient, gas, and waste exchange
47 between mother and fetus ^{14,15}. Beneath STBs reside the progenitor and mononucleated cytotrophoblast
48 (CTBs) that differentiate into EVTs or STBs. Throughout the pregnancy, CTBs continuously replicate and
49 fuse after the expression of the syncytialization marker syndecan-1 ^{17,18}, replenishing the STB layer. Both
50 STBs and CTBs constitute the placental barrier that protects the fetus from blood-borne pathogens ¹⁶.
51 Indeed, STBs exhibit a striking resistance to *T. gondii* attachment to the plasma membrane and to
52 intracellular replication ^{19–22}. Human cases of congenital toxoplasmosis have revealed lesions in the floating
53 villi; however, few or no parasites were observed in these lesions ^{12,13}, confirming the resistance of this
54 tissue to *T. gondii* intracellular replication. Therefore, how does *T. gondii* overcome the placental barrier?
55

56 There are over 156 distinct archetypal and non-archetypal strains of *T. gondii* ^{23–26} that can cause fetal
57 infection. How frequently these strains effectively overcome the placental barrier is poorly understood and
58 has been studied only to a limited extent. It is well known that extracellular parasites from several of these
59 strains can actively transmigrate across the placental barrier and other biological barriers *in vitro* ^{27,28}. In
60 these studies, *in vitro* placental barriers were made from tumor-origin placental cell lines susceptible to
61 pathogen infections, in which some parasites could cross after cell lysis ^{29,30}. Transmigration requires the
62 parasite's active motility and the modulation of the host cell tight junctions ³¹. Within the archetypal groups
63 found in North America, some strains exhibit differences in transmigration capacity, and this was attributed
64 to a long-distance migratory phenotype (LDM) ²⁸. During transmigration, *T. gondii* also exploits the host cell
65 intercellular adhesion molecule 1 (ICAM-1) and induces the dephosphorylation of the focal adhesion kinase
66 (FAK), which is essential for maintaining tight junction proteins such as ZO-1 ^{31,32}. However, the parasitic
67 effectors that mediate these cellular modulations or LDM are currently unknown.
68

69 The multifunctional cytokine macrophage migration inhibitory factor (*h*MIF) is highly secreted during the
70 early stages of gestation, with levels gradually decreasing as pregnancy progresses ^{33,34}. Notably, *h*MIF
71 secretion during the initial phases of pregnancy appears crucial for protecting STBs against apoptosis ³⁵.
72 Interestingly, protozoan parasites, including *T. gondii*, *Plasmodium*, and *Entamoeba*, produce a functional
73 homolog of the *h*MIF ³⁶. Due to specific sequence differences, *T. gondii* MIF (*Tg*MIF) exhibits reduced
74 tautomerase activity and lacks oxidoreductase activity compared to *h*MIF. Still, *Tg*MIF can stimulate IL-8
75 production in peripheral blood mononuclear cells (PBMCs), activate the ERK1/2 MAPK pathway in murine
76 macrophages ³⁷, and bind to *h*MIF receptor CD74 in an *in vitro* assay ³⁸. Interestingly, *Tg*MIF functions
77 remain unaffected by *h*MIF inhibitor ISO-1, highlighting the specificity of its structure and function ³⁷. To
78 date, no study has examined the capacity of *Tg*MIF to modulate cells at the placental barrier.
79

80 We used human trophoblast stem cells ³⁹ to create a polarized, syncytialized placental barrier within a
81 transwell system. This placental barrier enables us to focus exclusively on the ability of extracellular
82 parasites to transmigrate, as they are resistant to intracellular replication. Our findings demonstrate that
83 parasites deficient in *Tg*MIF exhibit significantly reduced transmigration capacity across cellular tight
84 junctions. Furthermore, we demonstrate that the extracellular parasite actively excretes *Tg*MIF to modulate
85 the ERK1/2 and FAK pathways, thereby facilitating the parasite's localization at tight junctions and
86 enhancing transmigration by increasing junctional permeability. Collectively, our research underscores the
87 essential role of *Tg*MIF in modulating the human placental barrier during *T. gondii* transmigration.
88

89 RESULTS

91 Establishing an *in vitro* placental barrier made from human trophoblast stem cells.

92 Tumor-origin cell lines have been previously used to generate *in vitro* placental barriers to study
93 extracellular parasite transmigration ³¹. However, these cells cannot fully recapitulate placental cell
94 resistance to *T. gondii* infection, such as attachment and intracellular replication restriction ^{19,20}. We aimed
95 to design a more accurate *in vitro* placental barrier system to study extracellular parasite transmigration.
96 We grew human trophoblast stem cells (*h*TSCs) ^{20,39} under CTB conditions on a 12-well transwell
97 membrane (0.9 cm²) with 8 µm pore size, coated with placental collagen IV + laminin 511, for 8 to 10 days.
98 These cells had been used previously to develop an *in vitro* barrier on the basal side of a transwell system,
99 differentiating into a mixed population of CTBs and STBs ⁴⁰. As a control, non-barrier-forming human

100 foreskin fibroblasts (HFFs) were also grown on transwells. After reaching complete confluence on the
101 transwell system, we confirmed expression of the tight junction protein ZO-1 across the transwell culture
102 (**Figure 1A**). We also confirmed the presence of syndecan-1, indicating that large areas of CTB have fused
103 to form STB patches in the barrier (**Figure 1B**). The polarized and syncytialized CTB/STB, now called the
104 placental barrier, presented a transepithelial electrical resistance (TEER) of 150-250 $\Omega \cdot \text{cm}^2$, significantly
105 higher than HFFs and similar to TEER values reported in prior literature using these cells ⁴⁰ (**Figure 1C**).
106 The placental barrier also exhibits less permeability to molecules such as 40 kDa FITC-Dextran (**Figure**
107 **1D**) than HFF. As expected, the placental barrier is more stringent to *T. gondii* intracellular growth (**Figure**
108 **1E**) and significantly limits parasite replication to one and two parasites per vacuole (**Figure 1F**) within 24
109 hours. To determine the transmigration capacity of extracellular parasites, we seeded 1×10^5 wild-type (WT)
110 RH-Luc parasites ⁴¹ onto the placental barrier. We counted the number that transmigrated to the bottom
111 after 16 hours ³¹. Approximately 20% of the live parasites (viability determined by plaque assay)
112 successfully transmigrated through the placental barrier, while more than 40% passed in HFF (**Figure 1G**).
113 To examine whether changes in these barrier properties would affect the parasite transmigration, we
114 stimulated the placental barrier with human cytokine interferon-gamma (IFN- γ) or human immunodeficiency
115 virus (HIV) protein Nef-1, both of which alter TEER and permeability ⁴²⁻⁴⁴ (**Figures S1A and B**). Neither of
116 these changes affected *T. gondii* transmigration (**Figure 1H**). Collectively, our *in vitro* system accurately
117 mimics the placenta's resistance to *T. gondii* intracellular replication, enabling us to assess only the
118 extracellular parasite's transmigration. Furthermore, it confirms that transmigration is not a passive process
119 but is actively driven by parasitic effectors ³².
120

121 ***TgMIF* mediates extracellular parasite transmigration across the human placental barrier.**

122 *T. gondii* expresses *TgMIF*, a functional homolog of the cytokine *hMIF*, which is known to activate the
123 ERK1/2 MAPK pathway ³⁷. Extracellular parasite transmigration depends on the active modulation of host
124 FAK and relies on ICAM-1 on the surface of the epithelial barrier ^{31,32}. Interestingly, ERK1/2 MAPK, FAK,
125 and ICAM-1 have interconnected functions that regulate various cell signaling pathways ⁴⁵. Therefore, we
126 hypothesize that *TgMIF* mediates the transmigration of extracellular parasites. To explore this hypothesis,
127 we generated an RH-Luc strain that is deficient in *TgMIF* ($\Delta TgMIF$) using a CRISPR/Cas9 strategy ⁵.
128 Compared to the WT, the $\Delta TgMIF$ parasite shows no defects in replication using luciferase assay or
129 parasite per vacuole count in HFF within 24 hours (**Figures 2A and B**) or in plaque formation after 5 days
130 (**Figures 2C**). Furthermore, the absence of *TgMIF* does not affect the parasite lethality in mice after
131 intraperitoneal injection (**Figure 2D**). However, only 7% of viable $\Delta TgMIF$ transmigrate across the placental
132 barrier, which is significantly lower than WT parasites (**Figure 2D**). The transmigration capacity is restored
133 to WT levels in $\Delta TgMIF$ parasites that have been complemented with a copy of the *TgMIF* gene inserted
134 into the UPRT (uracil phosphoribosyltransferase) locus (**Figure 2E**), thereby confirming the role of *TgMIF*
135 in this process. The placental barrier expresses *hMIF* ^{20,46,47}, which could have a synergistic effect alongside
136 *TgMIF*. To rule out this possibility, we first verified that $\Delta TgMIF$ complementation with *hMIF* does not restore
137 the transmigration capacity to WT parasite levels (**Figure 2E**). Then we used the specific inhibitor ISO-1 to
138 inhibit *hMIF* excreted by the placental cells ³⁷ and confirmed that it did not affect WT parasite transmigration
139 (**Figure 2F**). Finally, we found that inhibiting the *hMIF* receptor CD74 with the neutralizing antibody
140 Milatuzumab ⁴⁸ did not affect WT parasite transmigration (**Figure 2G**). Therefore, *TgMIF* is non-essential
141 for the replicative cycle or virulence of *T. gondii* in mice; however, it mediates the transmigration of
142 extracellular parasites across the human placental barrier, independently of *hMIF* and CD74 receptor.
143

144 ***TgMIF* distinctly modulates host ERK1/2 phosphorylation and FAK dephosphorylation.**

145 Recombinant *TgMIF* has previously been shown to activate the ERK1/2 MAPK pathway and to induce IL-
146 8 secretion in mouse bone marrow-derived macrophages and human PBMCs, respectively ³⁷. To confirm
147 that during infection, we infected the placental barrier with either WT parasites or with two distinct clonal
148 isolates of $\Delta TgMIF$ parasites for 45 minutes. We observed that the WT parasite strongly induces ERK1/2
149 phosphorylation, while both $\Delta TgMIF$ clones fail to do so (**Figure 3A**). Therefore, we hypothesize that *TgMIF*
150 mediates extracellular parasite transmigration via the ERK1/2 MAPK pathway. To test this hypothesis, we
151 used a chemical inhibitor of ERK1/2 phosphorylation, PD98059 ^{49,50}, to treat the placental barrier. PD98059
152 treatment indeed decreases ERK1/2 phosphorylation even in the presence of WT parasites (**Figure S3A**).
153 In the PD98059-treated barrier, we observed a significant decrease in WT parasite transmigration

154 compared to the DMSO-treated and non-treated conditions, thereby confirming our hypothesis (**Figure 3B**).
155 It is well established that *T. gondii* infection decreases FAK phosphorylation, and chemical inhibition of FAK
156 phosphorylation with PF-573228 increased *T. gondii* transmigration ³². In fact, in our placental barrier
157 treated with PF-573228, WT parasite transmigration is significantly higher than in the non-treated barrier
158 (**Figure S3B**). Then, we hypothesize that *TgMIF* mediates the dephosphorylation of FAK through the
159 ERK1/2 MAPK pathway ⁵¹. We confirmed the first part of our hypothesis by treating the placental barrier
160 with a recombinant *TgMIF* protein (r*TgMIF*) for 5 hours before western blot analysis. In a concentration-
161 dependent manner, we observed that r*TgMIF* significantly decreased FAK phosphorylation (**Figures S3C**
162 and **D**). Following this, we treated the placental barriers with PD98059, DMSO, or left them untreated, and
163 infected them with either WT or $\Delta TgMIF$ parasites for 5 hours. Subsequently, we conducted Western blot
164 analysis. Regardless of whether ERK1/2 MAP is inactivated, WT parasites significantly decreased FAK
165 phosphorylation, while $\Delta TgMIF$ parasites did not exhibit this function (**Figures 3C and D**). Consequently,
166 *T. gondii* transmigration across the placental barrier relies on the modulation of ERK1/2 and FAK
167 phosphorylation, both of which are distinctly mediated by *TgMIF*.
168

169 ***TgMIF* mediates extracellular parasite localization at the cellular tight junction.**

170 *hMIF* enhances ICAM-1 expression in various cell types ^{52,53}, and ICAM-1 plays a crucial role in the
171 transmigration of *T. gondii* across polarized endothelial and epithelial barriers ⁸. We hypothesize that *TgMIF*
172 promotes upregulation of ICAM-1 expression at the placental barrier via the ERK1/2 MAPK pathway ^{45,54}.
173 We infected the placental barriers with either WT or $\Delta TgMIF$ clones and performed Western blot analysis.
174 Our results showed no difference in ICAM-1 expression between WT and $\Delta TgMIF$ clones (**Figure 4A**).
175 However, when the placental barrier was treated with an ICAM-1-specific neutralizing antibody ³¹, we also
176 observed a significant decrease in WT parasite transmigration capacity (**Figure 4B**). To mediate leukocyte
177 adhesion at the cellular tight junction, ICAM-1 is associated with other CAM proteins, such as VCAM-1 ^{55,56}.
178 We hypothesize that *TgMIF* mediates extracellular adhesion and tight junction localization. To test this, we
179 seeded WT or $\Delta TgMIF$ parasites onto the placental barrier for 5 hours. The barrier was then fixed and
180 stained with ZO-1 for immunofluorescence. We captured images of random fields and quantified the
181 number of WT and $\Delta TgMIF$ parasites positioned at the tight junction (1); within 2 μ m of a tight junction (2);
182 and at distances greater than 2 μ m from a tight junction (3) (**Figure 4C**). Our data reveal that a significantly
183 higher percentage of WT parasites (35.75%) localize at tight junctions compared to $\Delta TgMIF$ parasites
184 (22.57%). Conversely, a larger proportion of $\Delta TgMIF$ parasites (38.05%) is found at a greater distance from
185 the junctions than WT parasites (28.25%) (**Figure 4D**). Notably, when seeded on barriers stimulated with
186 100 ng/mL of r*TgMIF*, the localization of $\Delta TgMIF$ parasites at cellular tight junctions significantly increased
187 (**Figure 4D**). Collectively, these findings highlight the critical roles of ICAM-1 and *TgMIF* in facilitating
188 extracellular parasite adhesion and localization to cellular junctions.
189

190 ***TgMIF* is a cytosolic protein, excreted by the extracellular parasite via the ABC transporter.**

191 Even though r*TgMIF* is functionally active in this study and previous ones ³⁷, *TgMIF* lacks a signal peptide,
192 which is required for its secretion via typical secretory organelles ^{37,57}. However, it is possible that, as *hMIF*
193 ⁵⁸ or *Entamoeba histolytica* MIF ⁵⁹, *TgMIF* is also excreted via a non-classical ATP-binding cassette (ABC)
194 transporter and could be present in the parasite excretory/secretory antigens (ESA). Classical microneme
195 and dense granule proteins are also found in the ESA ^{60,61}. To test this, we first determine the subcellular
196 localization of *TgMIF* within the parasite, in a strain where the protein is endogenously HA-tagged using the
197 pLIC plasmid ⁶². As expected, like *hMIF*, *TgMIF* predominantly localizes within the cytosolic compartment
198 of the parasite (**Figure 5A**). Then, we incubated *TgMIF*-HA-tagged extracellular parasites in PBS/FBS (no
199 detergent) at 37 °C for 3 hours, with or without probenecid, brefeldin A, or DMSO. Probenecid is an ABC
200 transporter inhibitor, while brefeldin A disrupts the ER-Golgi transport ^{59,61}. ESA was obtained after
201 centrifugation at 18,000 xg for 30 minutes at 4 °C. Importantly, the PBS/FBS incubation did not compromise
202 the integrity of the parasite plasma membrane, as demonstrated by propidium iodide staining (**Figure S5A**).
203 Similar to GRA5 and MIC2 ^{60,61}, *TgMIF* is also present in the ESA fraction (**Figure 5B**). To investigate the
204 impact of probenecid on *TgMIF* excretion, we quantified the residual protein remaining in the parasite pellet
205 and utilized GAP45 as a loading control. Our findings revealed a non-significant increase in *TgMIF* retention
206 within the parasite pellet during probenecid and probenecid/BFA treatments (**Figure 5C**), indicating that
207 probenecid reduces the excretion of this protein into the ESA. Next, we hypothesize that decreased *TgMIF*

208 excretion will reduce WT parasite transmigration. We treated the WT parasite with probenecid or DMSO,
209 or left it untreated, during transmigration. Probenecid, DMSO, or no treatment was added to the plaque
210 assay to determine the parasite viability, which was similar between all conditions. We found that in the
211 presence of probenecid, parasite transmigration decreased significantly compared to DMSO- or non-
212 treated parasites (**Figure 5D**). Furthermore, to confirm that *TgMIF* functions as an excreted effector, we
213 conducted experiments in which increased concentrations of ESA from WT (WT-ESA) or $\Delta TgMIF$ ($\Delta TgMIF$ -
214 ESA) were added to transmigrating WT or $\Delta TgMIF$ parasites. In a concentration-dependent manner, the
215 addition of WT-ESA significantly enhanced the transmigration of both WT and $\Delta TgMIF$ parasites (**Figures**
216 **5E and F**). In contrast, $\Delta TgMIF$ -ESA did not induce a similar effect (**Figures 5E and F**). Finally, r*TgMIF* but
217 not LPS, significantly enhanced transmigration in both WT and $\Delta TgMIF$ parasites (**Figure 5G**). Thus, we
218 clearly demonstrated that extracellular parasites excrete the cytosolic *TgMIF* protein as a soluble factor to
219 mediate transmigration.
220

221 ***TgMIF* is a factor determining *T. gondii* strain differences in transmigration capacity.**

222 Previous studies have demonstrated variations in the transmigration capacity among different strains ²⁸.
223 Based on this observation, we hypothesize that *TgMIF* mediates these strain differences through its
224 expression level, as no protein sequence differences were observed across strains (ToxoDB data). To test
225 our hypothesis, we quantified *TgMIF* expression levels by qPCR across seven archetypal RH-Luc and its
226 parental strains RH88, ME49, and non-archetypal strains from South America, FOU, COUGAR, ARI, and
227 GUY-DOS ^{25,26}. The $\Delta TgMIF$ strain was used as a reference, as it does not express *TgMIF*. At the same
228 time, we determined the transmigration capacity of each strain (normalized to their viability) using our
229 placental barrier. We observed a positive correlation between *TgMIF* expression levels and the
230 transmigration capacity of strains, thereby supporting our hypothesis (**Figure 6A**). The alignment of the
231 promoter regions among these strains shows that FOU, which exhibited the lowest *TgMIF* expression and
232 transmigration capacity, differs from the other strains. In contrast, COUGAR and ARI, who demonstrated
233 the highest transmigration capacities, possess closely related promoter sequences (**Figure 6B**). Thus, we
234 confirmed that the expression level of *TgMIF* is a strain-determining factor that mediates the capacity of *T.*
235 *gondii* strains to transmigrate across the human *in vitro* placental barrier.
236
237

238 **DISCUSSION**

239 Very few studies have investigated how *T. gondii* crosses the placental barrier, possibly because it is
240 perceived as a random occurrence or due to the scarcity of accurate placental models. Using *hTSCs* ^{20,39},
241 we have developed a human *in vitro* placental barrier that demonstrates significant resistance to the
242 intracellular replication of *T. gondii*. This resistance is likely attributed to cell polarization and the presence
243 of extensive areas of STBs, which were absent in the previous model using the BeWo cell line ³¹. The
244 *hTSCs* have been used to create a barrier consisting of a layer of STBs situated above progenitor CTBs ⁴⁰.
245 Although this barrier represents a more robust structural model compared to ours, quantifying
246 transmigration would pose a challenge. This is due to the limited number of intercellular junctions, which
247 would necessitate infecting the barrier with a substantially larger number of parasites. In fact, the exact
248 number of parasites capable of successfully traversing the placenta to infect the fetus during pregnancy
249 remains unknown. This is likely a low number, as the number of parasites that reach the placenta would be
250 constrained by factors limiting dissemination. Using our model, we demonstrate that across various parasite
251 strains, the number of extracellular parasites that transmigrate is relatively low, resulting in minimal
252 disruption of placental barrier integrity. Therefore, extracellular parasites' transmigration could explain why
253 up to 70% of fetal infections are discreet phenomena that go undetected during pregnancy ^{63,64}. Through
254 our system, we have demonstrated that extracellular parasite transmigration is not a matter of chance, but
255 rather an active process mediated by a parasitic effector.
256

257 Our findings reveal that *TgMIF* is localized within the parasite cytosol and shows no colocalization with the
258 classical secretory organelles. Lacking a signal peptide, *TgMIF*, similar to host and several parasitic MIFs,
259 is excreted through the ABC transporter pathway ^{58,59} into the ESA fraction ⁵⁹. While *hMIF* is excreted by
260 ABCA1 ⁵⁸, which is absent in *T. gondii*, the parasite still expresses a diverse array of ABC transporter
261

262 families, many of which remain uncharacterized^{65,66}. Classical secreted microneme and dense granule
263 proteins are also found in the ESA^{60,61,67}. However, the excretion of GRAs into the ESA is influenced by
264 serum, temperature, and pH⁶¹, whereas the release of MICs is mediated by calcium signaling⁶⁷. Notably,
265 ESA has been extensively utilized in various *T. gondii* studies, including immunization strategies for vaccine
266 development⁶⁸, modulation of the host immune response^{69,70}, and the mediation of miscarriage in mice via
267 Toll-like receptor 4⁷¹. However, the molecular factors mediating these ESA functions have yet to be
268 identified. In this study, we show that *TgMIF*, present in the extracellular parasite ESA, plays a crucial role
269 in modulating the placental barrier during *T. gondii* transmigration. Our findings emphasize the role of
270 excretory proteins in modulating host pathways before infection, which could also affect how classical
271 secreted proteins subsequently interact with the host.
272

273 *In vitro*, r*TgMIF* binds to CD74 receptor³⁸; however, we found that *TgMIF* does not mediate transmigration
274 via CD74 and does not require *hMIF*. To transduce the signal from the ligand, CD74 requires distinct
275 coreceptors, including CD44, CXCR2, CXCR4, and CXCR7^{72,73}. However, some of these coreceptors can
276 interact with the ligand independently of CD74^{73,74}. For example, *PfMIF* interacts with CXCR2 and CXCR4
277 independently of CD74 to inhibit the random migration of monocytes⁷⁵. Similarly, our characterization of
278 *TgMIF* function supports the possibility of binding to two distinct receptors. We show that *TgMIF* activates
279 ERK1/2 MAPK within 45 minutes and induces FAK dephosphorylation within 5 hours. Both ERK1/2 MAPK
280 activation and FAK dephosphorylation are critical for parasite transmigration. However, our data exclude
281 the possibility that FAK dephosphorylation is dependent on the ERK1/2 MAPK pathway via PIN/PEST
282 phosphatases activation⁵¹. Therefore, FAK dephosphorylation will affect ZO-1 at the tight junction^{32,76},
283 while ERK1/2 MAPK activation could direct the phosphatase PP2A to dephosphorylate and inactivate
284 occludin⁷⁷, which we did not test in this study. Supporting literature on Caco-2 cells shows that infection
285 with *T. gondii* results in reduced occludin expression and visible disruption observed by
286 immunofluorescence^{78,79}. Thus, we established that *TgMIF* mediates extracellular parasite transmigration
287 in a CD74-independent manner, highlighting its functional specificity compared to *hMIF*.
288

289 Our research shows that *TgMIF* mediates the localization of extracellular parasites at cellular tight junctions
290 and confirms that the host adhesion molecule ICAM-1 is essential for their transmigration³¹. Interestingly,
291 *T. gondii* does not induce the upregulation of ICAM-1 expression at the placental barrier, as this was
292 observed with *hMIF*⁵². Thus, both *TgMIF* and ICAM-1 could mediate transmigration by enhancing the
293 adhesion of extracellular parasites to cellular tight junctions. During leukocyte transmigration, ICAM-1
294 binding to its ligand can activate the ERK1/2 MAPK pathway, thereby stimulating more ICAM-1 expression
295⁴⁵. However, it is noteworthy that r*TgMIF* alone can activate ERK1/2 MAPK, suggesting that prior contact
296 between the parasite and the cell membrane via ICAM-1 is not necessary for this activation. In one scenario,
297 the activation of ERK1/2 MAPK by *TgMIF* results in the upregulation of other adhesion molecules, such as
298 VCAM-1, which, together with ICAM-1, facilitates transmigration^{45,80-82}. Conversely, in another scenario,
299 *TgMIF* will only induce the relocalization of ICAM-1 to cellular tight junctions without altering its expression
300 level⁸³. Both scenarios are plausible, as in our data, the inhibition of ICAM-1 or the absence of *TgMIF*
301 produces similar effects on parasite transmigration. Thus, our study suggests that *TgMIF* mediates the
302 adhesion of extracellular parasites to tight junctions before facilitating transmigration. Therefore, it will be
303 interesting to study how parasite motility changes upon contact with the cellular tight junction.
304

305 We found that *TgMIF* expression levels mediate strain differences in transmigration capacity. A previous
306 study also showed differences in transmigration capacity between archetypal strains²⁸. In this study, the
307 RH type I strain presents the highest transmigration capacity, which is supposed to be mediated by the
308 LDM²⁸. The molecular factors behind the LDM phenotype are unknown; however, it not only mediates
309 transmigration but also virulence, migration, and host cell metabolic exploitation^{28,84}. It is possible that
310 *TgMIF*, through a synergistic effect with other effectors, mediates LDM; however, our study did not
311 investigate this further. We found that RH transmigration capacity is higher than that of ME49, a type II
312 strain; however, it is much lower than the non-archetypal strains COUGAR, GUY-DOS, and ARI. We clearly
313 show that the transmigration capacity of a strain depends on *TgMIF* expression levels in this strain. Indeed,
314 the expression level of *TgMIF* varies among *T. gondii* strains²⁶, and our data confirms this and provides a
315 phenotypic outcome. However, a previous study showed that *TgMIF* expression level is higher in ME49

316 than in RH⁸⁵. We extracted mRNA from intracellular parasites; we cannot rule out the possibility that, if the
317 extraction had been performed on extracellular RH, transcript levels might differ from those in our study.
318 The alignment of the *TgMIF* promoter supports our data, where FOU has the most divergent sequence and
319 the lowest expression and transmigration. At the same time, COUGAR and ARI are similar and display high
320 expression and transmigration. Finally, we did not test this, but it is possible that the excretion levels of
321 *TgMIF* in COUGAR, ARI, and GUY-DOS account for the differences in their transmigration capacity. Thus,
322 our data suggest that parasite strains with high *TgMIF* expression and excretion are most likely to cause
323 congenital infection in pregnant women.

324
325 In conclusion, we propose the model shown in Figure 7, in which extracellular parasites release *TgMIF*,
326 which interacts with two distinct receptors on the maternal side of placental barrier cells. Binding to Receptor
327 1 activates the ERK1/2 MAPK pathway, resulting in the modulation of cell adhesion molecules (CAMs) at
328 the tight junctions and/or the dephosphorylation of Occludin. As a result, the adherence of extracellular
329 parasites to the placental barrier increases, particularly at the cellular tight junctions. Simultaneously,
330 binding to Receptor 2 leads to FAK dephosphorylation and affects the localization of ZO-1 at the tight
331 junctions. These modulation enables the parasites to transmigrate across the permeable junction and reach
332 the fetal side.

333
334
335 **MATERIALS AND METHODS**
336

337 **Parasite Culture.**

338 *T. gondii* parasites included in this study are the RH-Luc⁺ (WT)⁴¹, RH-Luc⁺*ΔTgMIF* (*ΔTgMIF*), RH-
339 Luc⁺*ΔTgMIF_hMIF-HA*, (*hMIF* comp) RH-Luc⁺*ΔTgMIF_TgMIF-HA* (*TgMIF* comp), RH Δ ku80_*TgMIF-HA*,
340 RH-88, ME49, ARI, COUGAR, FOU, and GUY-DOS²⁶. All parasites were passaged on a monolayer of
341 human foreskin fibroblasts (HFFs) growing in Dulbecco's Modified Eagle Medium (Gibco, #11965118)
342 supplemented with 1% Heat heat-inactivated fetal Bovine Serum (Gibco, #A56698-01), 100 U/mL Penicillin-
343 Streptomycin (Gibco, #15140122), 2 mM L-Glutamine (Gibco, #25030081), and 10 μ g/mL Gentamicin
344 (Gibco, #15710072) at 37°C in 5% CO₂.

345
346 **Generation of an *in vitro* human placental barrier.**

347 To prepare the *in vitro* human placental barrier, 12-well transwells with 8 μ m pores (Falcon #353182) were
348 pretreated for 2 hours with 50 μ g/mL human placental collagen IV (MilliporeSigma #C5533-5MG), then for
349 15 minutes with iMatrix-511. *hSTC* in CTB media²⁰ were seeded at a cell density of 3 x10⁴ cells/transwell
350 and cultured for 8-10 days until reaching confluence, with media changes every 48 hours. As a control for
351 non-barrier-forming cells, the above was repeated using HFFs and their respective media. Transepithelial
352 electrical resistance was measured using an ohmmeter (World Precision Instruments, #EVOM3) blanked
353 with a sterile transwell in fresh media. A threshold of 150 Ω *cm² was established for the polarized placental
354 barrier in future experiments. Barrier integrity was measured by adding 20 μ g/mL of 40kDa FITC-Dextran
355 (MilliporeSigma #FD40S-250MG) to the apical side of the transwell. Sixteen hours later, the media on the
356 basolateral side of the transwell was collected. FITC-Dextran passage was quantified using a SpectraMax
357 iD3 (Molecular Devices) with an excitation λ of 485 nm and an emission λ of 528 nm. A sterile transwell
358 with no cell culture was included as a blank to determine the maximum of passing FITC-Dextran. FITC-
359 Dextran passage is then presented as the percentage of FITC-Dextran measured in a sample compared
360 to the blank. Media control was included during measurements and subtracted before other calculations.
361 For all transmigration, parasite growth, and luciferase assays, the A83-01 inhibitor was removed, and the
362 barrier was washed 24 hours prior²⁰.

363
364 **Plasmid Generation.**

365 sgRNAs targeting the *TgMIF* gene (TGGT1_290040) were cloned into the pU6-Universal vector⁸⁶. For C-
366 terminal HA epitope tagging, a region of the *TgMIF* gene upstream of the stop codon was amplified by PCR
367 with specific primers and inserted into pLIC-HA-dhfr using ligation-independent cloning⁶². For the
368 recombinant *TgMIF* plasmid, the *TgMIF* coding sequence was amplified with specific primers from wild-
369 type RH parasites' cDNA and then inserted into the pET21a+ plasmid (Addgene #69740-3) at the NdeI and

370 Xhol cut sites. For complementation plasmids, *TgMIF* and *hMIF* coding sequences were amplified with
371 specific primers (the reverse primer included an HA epitope) from wild-type RH parasites and HFF,
372 respectively. Both were then inserted into pUPRT::DHFR-D plasmid (Addgene #58528) ⁸⁷ using Gibson
373 Assemble, flanked by 1000 base pairs upstream (promoter) and downstream (3'UTR) of the *TgMIF* gene.
374 The promoter was amplified from DNA synthesized by Integrated DNA Technologies; the full-length
375 sequence is available in Supporting Information. All sgRNAs and primer sequences are listed in the Primer
376 Table of Supporting Information.
377

378 **Construction of Parasite Strains.**

379 To generate the $\Delta TgMIF$ strain, the plasmid containing sgRNAs was co-transfected with NotI-linearized
380 pTKOatt, which includes the *hxgprt* selection cassette and GFP ⁸⁸, into RH-Luc⁺ (parasites at a 5:1 ratio of
381 sgRNA to linearized pTKOatt plasmid). 24 h post-transfection, two distinct populations were selected with
382 mycophenolic acid (50 μ g/mL) and xanthine (50 μ g/mL) and cloned by limiting dilution. PCR and
383 sequencing were used to confirm two distinct individual knockout clones, $\Delta TgMIF$ (G8 and H4).
384 Complementation with *TgMIF* and *hMIF* genes was performed in the $\Delta TgMIF$ strain by transfecting with
385 either pUPRT-*TgMIF*-HA or pUPRT-*hMIF*-HA plasmid. After first lyse out, populations were selected with
386 10 μ M 5-fluoro-2'-deoxyuridine (FUDR) (Millipore Sigma #F0503-100MG) and cloned by limiting dilution.
387 Complemented parasites were isolated after HA immunofluorescence assay. Endogenously tagged
388 parasites were made in the RH Δ ku80 strain ⁶² by transfection with plasmid pLIC-*TgMIF*-HA-dhfr. 24 h post-
389 transfection, populations were selected with 1 μ M of pyrimethamine and cloned by limiting dilution. Clones
390 were isolated after an HA immunofluorescence assay.
391

392 **Recombinant Protein Production.**

393 The plasmid pET21a+ containing *TgMIF* gene coding sequence was used to transform BL21(DE3)
394 competent E. coli (New England BioLabs #C2527H). *TgMIF*-6xHis protein expression was induced using 1
395 mM IPTG at 37°C for 16 hours. The E. coli was centrifuged down and sonicated on ice for 30 seconds on,
396 60 seconds off, and 20 times in PBS containing lysozyme and DNaseI. Recombinant *TgMIF*-6xHis protein
397 (r*TgMIF*) was recovered using NEBExpress Ni-NTA Magnetic Beads (New England BioLabs #S1423S)
398 according to the manufacturer's protocol, eluted with 0.5 M imidazole, dialyzed and cleaned of endotoxins
399 using the Pierce High Capacity Endotoxin Removal Spin Columns (Thermo Scientific #88274) according to
400 the manufacturer's protocol.
401

402 **Immunofluorescence Assay.**

403 All placental barriers or HFFs, infected or not, were fixed for 20 minutes at room temperature with 4%
404 Paraformaldehyde, then blocked and permeabilized for 30 minutes with 3% Bovine Serum Albumin in PBS
405 with 0.2% Triton X-100. Respective primary antibodies were used, as well as the following Alexa-Fluor
406 secondary antibodies [1:1,000] (Invitrogen, α -Mouse-594 #A11005, α -Rat-594 #A11007, α -Rabbit-488
407 #A11008, α -Rabbit-594 #A11012). HOECHST [1:2,000] (MilliporeSigma #63493-5MG) was used to
408 visualize the nucleus. All images were taken at 40x or 100x objective on a Nikon ECLIPSE Ti2-A. **For**
409 **placental barrier validation**, the cells were stained with Rat α -ZO-1 [1:1,000] (Cell Signaling Technology
410 #6B6E4) overnight at 4°C (rocking), and Rabbit α -Synecan-1 [2 μ g/mL] (Abcam #AB128936) at room
411 temperature for 1 hour. **For parasite per vacuole assay**, WT and $\Delta TgMIF$ -infected placental barriers or
412 HFFs at the multiplicity of infection 1 (MOI1). The cells were then stained with Rabbit α -GAP45 [1:5,000]
413 antibody. Five randomized images were taken at 40x, utilizing a 10-step Z-Stack for the placental barrier
414 due to cell thickness. From these images, all parasite vacuoles were quantified for the number of parasites
415 within the vacuole and grouped into 1, 2, 4, 8, or 8+ parasites per vacuole. **For the tight junction proximity**
416 **assay**, Placental barriers were treated with 100 ng/mL r*TgMIF* or left untreated, then infected with 2x10⁵
417 WT or $\Delta TgMIF$ parasites. The barriers were incubated for 5 hours and stained with ZO-1 and GAP45
418 antibodies. Images of each well were taken at a 40x objective, and a total number of 300 parasites was
419 considered. The NIS-Elements tool was used to measure parasites' proximity to the cellular tight junction,
420 with distances of 2 μ m or less considered closer. **For TgMIF intracellular localization**, HFFs infected with
421 RH Δ ku80_ *TgMIF*-HA for 24 hours at MOI1 were stained with Rat α -HA antibody (Sigma Aldrich,
422 #NC1821908) for 1 hour at room temperature, and a representative image was captured at 100x to display
423 *TgMIF* intracellular localization.

424

425 **Luciferase Assay.**

426 The placental barrier and HFF were infected with RH Δ hpt_Luc⁺ (WT) for 24 hours. Cells were collected and
427 lysed at 37°C for 10 minutes in 75 μ L Cell Lysis Buffer⁸⁹ made of PBS containing 10% glycerol, 1% Triton
428 X-100 (MilliporeSigma #TX1568-1), 0.2% dithiothreitol (MP Biomedicals #100597), and protease inhibitor
429 (Thermo Scientific #1861284). 25 μ L from each sample was plated in technical triplicate in a 96-well plate
430 and then measured on the SpectraMax iD3 after automatic injection of click-beetle luciferin (Promega
431 #E1603). Data are shown as the mean of each biological replicate, with uninfected cell control values
432 subtracted.

433

434 **Excreted Secreted Antigen Collection.**

435 T175 flasks were infected with 1x10⁷ of freshly lysed WT, Δ TgMIF, or RH Δ ku80_TgMIF-HA parasite for 3
436 days. Freshly lysed parasites were collected from their respective flasks and centrifuged at 582 \times g for 10
437 minutes. The supernatant was aspirated, and the parasites were resuspended in 5 mL PBS. Parasites were
438 counted, and fractions of 5x10⁷ were centrifuged at 582 \times g for 10 minutes. Each fraction was resuspended
439 in 1 mL PBS + 10% FBS and then rested at 37°C for 3-5 hours in the presence or absence of 10 μ M
440 Probenecid (MedChemExpress #HY-B0545), 10 μ M Brefeldin A (MedChemExpress #HY-16592), or an
441 equivalent volume of DMSO. Excreted Secreted Antigen (ESA) samples from WT and Δ TgMIF parasite
442 strains used for transmigration assays were centrifuged at 18000 \times g, 4°C for 30 minutes to separate
443 parasites from supernatant, with supernatant then stored at -80°C until use. The ESA from the
444 RH Δ ku80_TgMIF-HA parasite was isolated similarly, precipitated with Trichloroacetic Acid (Millipore Sigma
445 #T6399), and resuspended in PBS. The RH Δ ku80_TgMIF-HA parasite pellets in RIPA buffer and the
446 corresponding resuspended ESA were both processed for Western blot analysis as described below.

447

448 **SDS-PAGE and Western Blot.**

449 Placental barriers were treated with 50 μ M PD98059 or an equivalent volume of DMSO for 24 hours, then
450 infected or not for 45 minutes. All Western blot samples were processed as follows. Cells were collected
451 and lysed in RIPA buffer on ice for 30 minutes, then centrifuged at 18000 xg, 4°C for 30 minutes. The
452 supernatant was collected and combined 1:4 with 4x loading buffer containing 375 mM Tris-HCl, 50%
453 glycerol, 10% SDS, and 0.03% Bromophenol Blue. Samples were then boiled at 50°C for 5 minutes (for the
454 detection of phosphorylated protein) or at 90°C for other samples. Samples were run on 10-12% SDS-
455 PAGE and then transferred to a PVDF membrane. The membrane was blocked in 5% milk in Tris-buffered
456 saline containing 1% Tween 20. GAPDH [1:1,000] (Cell Signaling Technology #D16H11) and GAP45
457 [1:3,000] antibodies were used for cell and parasite loading control, respectively. All quantification was
458 normalized to GAPDH. Primary antibodies were added at the following concentrations: Rat α -HA [1:500],
459 Mouse α -ICAM-1 [1:250] (Invitrogen, #ENMA5407), Rabbit α -pERK1/2-T202/Y204 [1:2,000] (Cell Signaling
460 Technology #D13.14.4e), Rabbit α -total ERK1/2 [1:1,000] (Cell Signaling Technology #137F5), Rabbit
461 α -pFAK-Y397 [1:750] (Cell Signaling Technology #3283), Rabbit α -total FAK [1:1,000] (Cell Signaling
462 Technology #3285T), Mouse α -GRA5 [1:5,000] (BioVision #A1299-50), and Rabbit α -MIC2 [1:5,000]. After
463 incubation with respective secondary HRP antibodies, protein visualization was performed by
464 chemiluminescence using ProSignal Dura (Genesee Scientific #20-301B).

465

466 **Transmigration Assay.**

467 Freshly lysed parasites were seeded onto the placental barrier at 2x10⁵ parasites/transwell, then left
468 untouched at 37°C, 5% CO₂ for 16 hours. From the same parasite population, three wells of confluent HFF
469 cells in a 24-well plate were infected with 100 parasites and left untouched at 37°C and 5% CO₂ for 5 days.
470 One placental barrier was left uninfected as a control. To compare across several strains in **Figure 6**, the
471 initial infection was increased to 5x10⁵ parasites/transwell to account for low viability in some strains. After
472 16 hours, media from the basolateral side of the transwells was collected and centrifuged at 582 xg for 10
473 minutes. The supernatant was removed, leaving 100 μ L to resuspend the transmigrating parasites, which
474 were then counted on a hemocytometer. After 5 days, the number of plaques in each well of the 24-well
475 plate was counted. The average number of plaques was considered equivalent to parasite viability. The
476 number of transmigrating parasites was normalized to this viability, yielding the percentage of
477 transmigrating viable parasites. Treatment of placental barrier with inhibitors and proteins included the

478 following: 500 ng/mL recombinant HIV-Nef protein (Abcam, #ab63996) concurrent with infection, 100 ng/mL
479 of human IFN- γ (Peprotech #300-02-200UG) added 6 hours before infection, 100 ng/mL *E. coli* K12
480 lipopolysaccharide (InvivoGen #tlr-eklps) concurrent with infection, 100 ng/mL rTgMIF protein concurrent
481 with infection, 5 μ g/mL of ICAM-1 neutralizing antibody (Invitrogen #ENMA5407) 6 hours before infection,
482 50 μ M MEK inhibitor PD98059 (Cell Signaling Technology, #9900S) or an equivalent volume of DMSO 24
483 hours before infection, 10 μ M human MIF inhibitor ISO-1 (Sigma-Aldrich #475837-5MG) 30 minutes before
484 infection, 12.5 μ M FAK inhibitor PF-573228 (Sigma-Aldrich #PZ0117-5MG) 16 hours before infection, 10-50
485 μ g/mL Milatuzumab (MedChemExpress #HY-P99731) 24 hours before infection, 10 μ M Probenecid or an
486 equivalent volume of DMSO for 10 minutes before infection, a volume of WT or Δ TgMIF Excreted-Secreted
487 Antigen (ESA) equal to 5×10^5 or 1×10^6 parasites concurrent with infection.
488

489 **Mouse Survival Assay.**

490 Mice were housed in an Association for Assessment and Accreditation of Laboratory Animal Care
491 International-approved facility at Texas A&M University. All animal studies were conducted in accordance
492 with the US Public Health Service Policy on Humane Care and Use of Laboratory Animals, and the
493 Institutional Animal Care and Use Committee at Texas A&M University in College Station approved
494 protocols. Eighteen 8-week-old CD-1 mice (Charles River Laboratories) were infected intraperitoneally with
495 a lethal dose of 2×10^3 WT or Δ TgMIF parasites, 9 mice per group. Mice were observed twice daily for signs
496 of infection and weighed once every two days. Survival was recorded daily until all mice had died or were
497 euthanized.
498

499 **qPCR.**

500 mRNA was isolated from intracellular parasites using Monarch® Total RNA Miniprep Kit (NEB #T2110),
501 and cDNA was obtained after RT-PCR using LunaScript® RT SuperMix (NEB # M3010L). For each parasite
502 strain, TgMIF transcript levels were quantified by qPCR using specific primers (see the Primer Table in the
503 Supporting Information). The transcript level of the *T. gondii* TUB1A gene was used to normalize the
504 number of parasites across the strain, and RH/hpt⁺_Luc⁺_ Δ tg_{mif}_GFP⁺ (Δ TgMIF) was used as a reference
505 strain.
506

507 **Statistical Analysis.**

508 Statistical analysis for all experiments was performed in GraphPad PRISM, with the number of replicates,
509 the statistical test used, and the significance values reported in the respective figure legend.
510

511 **ACKNOWLEDGMENTS**

512 We thank Dr. Jon Boyle (University of Pittsburgh) for providing the hTSC and culture protocols. We thank
513 Dr. Dominic Soldati (University of Geneva) for providing GAP45 antibody and Dr. Vern Carruthers
514 (University of Michigan) for providing MIC2 and MIC5 antibodies. We thank Dr. Jeroen Saeij (University of
515 California, Davis) for providing non-archetypal parasite strains. This work was supported by NIH R21
516 AI185518-02 grant.
517

518 **AUTHOR CONTRIBUTIONS**

519 K.B.K. and L.O.S. designed research; K.B.K. and G.D.S. prepared parasite strains and recombinant
520 protein; K.B.K. and L.O.S. performed experiments; K.B.K. and L.O.S. analyzed data; K.B.K. designed
521 figures; and K.B.K. and L.O.S. wrote the manuscript.
522

523

524 **CONFLICT OF INTERESTS**

525 The authors declare no conflicts of interest.
526

529 **BIBLIOGRAPHY**

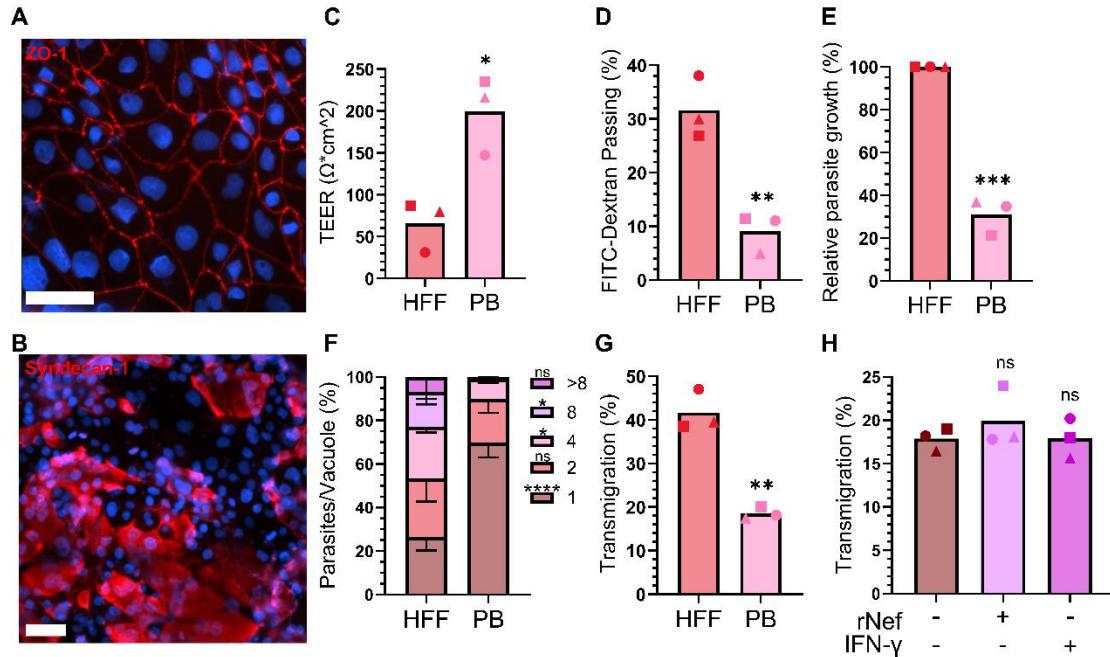
- 530
- 531 1. McAuley, J. B. Congenital Toxoplasmosis. *J. Pediatric Infect. Dis. Soc.* **3 Suppl 1**, S30-5 (2014).
- 532 2. Courret, N. *et al.* CD11c- and CD11b-expressing mouse leukocytes transport single *Toxoplasma*
533 *gondii* tachyzoites to the brain. *Blood* **107**, 309–316 (2006).
- 534 3. Lambert, H., Hitziger, N., Dellacasa, I., Svensson, M. & Barragan, A. Induction of dendritic cell
535 migration upon *Toxoplasma gondii* infection potentiates parasite dissemination. *Cell. Microbiol.* **8**,
536 1611–1623 (2006).
- 537 4. Bierly, A. L., Shufesky, W. J., Sukhumavasi, W., Morelli, A. E. & Denkers, E. Y. Dendritic Cells
538 Expressing Plasmacytoid Marker PDCA-1 Are Trojan Horses during *Toxoplasma gondii* Infection. *J.*
539 *Immunol.* **181**, 8485–8491 (2008).
- 540 5. Sangaré, L. O. *et al.* *In vivo* CRISPR screen identifies *TgWIP* as a *Toxoplasma* modulator of dendritic
541 cell migration. *Cell Host Microbe* **26**, 478-492.e8 (2019).
- 542 6. Drewry, L. L. *et al.* The secreted kinase ROP17 promotes *Toxoplasma gondii* dissemination by
543 hijacking monocyte tissue migration. *Nat. Microbiol.* **4**, 1951–1963 (2019).
- 544 7. Shiono, Y. *et al.* Maternal-fetal transmission of *Toxoplasma gondii* in interferon-gamma deficient
545 pregnant mice. *Parasitol. Int.* **56**, 141–148 (2007).
- 546 8. Pezerico, S. B., Langoni, H., Da Silva, A. V. & Da Silva, R. C. Evaluation of *Toxoplasma gondii*
547 placental transmission in BALB/c mice model. *Exp. Parasitol.* **123**, 168–172 (2009).
- 548 9. Beckett, R. S. & Flynn, F. J., Jr. TOXOPLASMOSIS; Report of Two New Cases, with a Classification
549 and with a Demonstration of the Organisms in the Human Placenta. *N. Engl. J. Med.* **249**, 345–350
550 (1953).
- 551 10. Sarrut, S. Histological study of the placenta in congenital toxoplasmosis. *Ann. Pediatr. (Paris)* **14**,
552 2429–2435 (1967).
- 553 11. Mellgren, J., Alm, L. & Kjessler, A. The isolation of toxoplasma from the human placenta and uterus.
554 *Acta Pathol. Microbiol. Scand.* **30**, 59–67 (1952).
- 555 12. Elliott, W. G. Placental Toxoplasmosis: Report of a Case. *Am. J. Clin. Pathol.* **53**, 413–417 (1970).

- 556 13. Benirschke & Driscoll. The Pathology of the Human Placenta. in *The Pathology of the Human Placenta*
557 100–105 (Springer New York, New York, NY, 1967).
- 558 14. Megli, C. J. & Coyne, C. B. Infections at the maternal-fetal interface: an overview of pathogenesis and
559 defence. *Nat. Rev. Microbiol.* **20**, 67–82 (2022).
- 560 15. Coyne, C. B. & Lazear, H. M. Zika virus - reigniting the TORCH. *Nat. Rev. Microbiol.* **14**, 707–715
561 (2016).
- 562 16. Delorme-Axford, E., Sadovsky, Y. & Coyne, C. B. The Placenta as a Barrier to Viral Infections. *Annu.*
563 *Rev. Virol.* **1**, 133–146 (2014).
- 564 17. Jokimaa, V. *et al.* Expression of Syndecan-1 in Human Placenta and Decidua. *Placenta* **19**, 157–163
565 (1998).
- 566 18. Prakash, G. J., Suman, P. & Gupta, S. K. Relevance of Syndecan-1 in the Trophoblastic BeWo Cell
567 Syncytialization. *Am. J. Reprod. Immunol.* **66**, 385–393 (2011).
- 568 19. Ander, S. E. *et al.* Human Placental Syncytiotrophoblasts Restrict *Toxoplasma gondii* Attachment and
569 Replication and Respond to Infection by Producing Immunomodulatory Chemokines. *MBio* **9**, e01678–
570 17 (2018).
- 571 20. da Silva, R. J. *et al.* The trophoblast surface becomes refractory to adhesion by congenitally
572 transmitted *Toxoplasma gondii* and *Listeria monocytogenes* during cytotrophoblast to
573 syncytiotrophoblast development. *mSphere* **9**, e0074823 (2024).
- 574 21. McConkey, C. A. *et al.* A three-dimensional culture system recapitulates placental syncytiotrophoblast
575 development and microbial resistance. *Sci. Adv.* **2**, e1501462 (2016).
- 576 22. Robbins, J. R., Zeldovich, V. B., Poukchanski, A., Boothroyd, J. C. & Bakardjiev, A. I. Tissue Barriers
577 of the Human Placenta to Infection with *Toxoplasma gondii*. *Infect. Immun.* **80**, 418–428 (2012).
- 578 23. Brito, R. M. de M. *et al.* Genetic diversity of *Toxoplasma gondii* in South America: occurrence,
579 immunity, and fate of infection. *Parasit. Vectors* **16**, 461 (2023).
- 580 24. Saeij, J. P. J., Boyle, J. P. & Boothroyd, J. C. Differences among the three major strains of *Toxoplasma*
581 *gondii* and their specific interactions with the infected host. *Trends Parasitol.* **21**, 476–481 (2005).

- 582 25. Lorenzi, H. *et al.* Local admixture of amplified and diversified secreted pathogenesis determinants
583 shapes mosaic *Toxoplasma gondii* genomes. *Nat. Commun.* **7**, 10147 (2016).
- 584 26. Minot, S. *et al.* Admixture and recombination among *Toxoplasma gondii* lineages explain global
585 genome diversity. *Proc. Natl. Acad. Sci. U. S. A.* **109**, 13458–13463 (2012).
- 586 27. Ross, E. C., Olivera, G. C. & Barragan, A. Early passage of *Toxoplasma gondii* across the blood–brain
587 barrier. *Trends Parasitol.* **38**, 450–461 (2022).
- 588 28. Barragan, A. & Sibley, L. D. Transepithelial Migration of *Toxoplasma gondii* is Linked to Parasite
589 Motility and Virulence. *J. Exp. Med.* **195**, 1625–1633 (2002).
- 590 29. Oliveira, J. G. *et al.* BeWo trophoblasts are unable to control replication of *Toxoplasma gondii*, even
591 in the presence of exogenous IFN-gamma. *Placenta* **27**, 691–698 (2006).
- 592 30. Barbosa, B. F. *et al.* Susceptibility to *Toxoplasma gondii* proliferation in BeWo human trophoblast cells
593 is dose-dependent of macrophage migration inhibitory factor (MIF), via ERK1/2 phosphorylation and
594 prostaglandin E2 production. *Placenta* **35**, 152–162 (2014).
- 595 31. Barragan, A., Brossier, F. & Sibley, L. D. Transepithelial migration of *Toxoplasma gondii* involves an
596 interaction of intercellular adhesion molecule 1 (ICAM-1) with the parasite adhesin MIC2. *Cell.*
597 *Microbiol.* **7**, 561–568 (2005).
- 598 32. Ross, E. C., Olivera, G. C. & Barragan, A. Dysregulation of focal adhesion kinase upon *Toxoplasma*
599 *gondii* infection facilitates parasite translocation across polarised primary brain endothelial cell
600 monolayers. *Cell. Microbiol.* **21**, e13048 (2019).
- 601 33. Todros, T. *et al.* Role of the Macrophage Migration Inhibitory Factor in the Pathophysiology of Pre-
602 Eclampsia. *Int. J. Mol. Sci.* **22**, 1823 (2021).
- 603 34. Ietta, F. *et al.* Oxygen regulation of macrophage migration inhibitory factor in human placenta. *Am. J.*
604 *Physiol. Endocrinol. Metab.* **292**, E272-80 (2007).
- 605 35. Ietta, F. *et al.* Role of the Macrophage Migration Inhibitory Factor (MIF) in the survival of first trimester
606 human placenta under induced stress conditions. *Sci. Rep.* **8**, 12150 (2018).
- 607 36. Ghosh, S., Jiang, N., Farr, L., Ngobeni, R. & Moonah, S. Parasite-Produced MIF Cytokine: Role in
608 Immune Evasion, Invasion, and Pathogenesis. *Front. Immunol.* **10**, 1995 (2019).

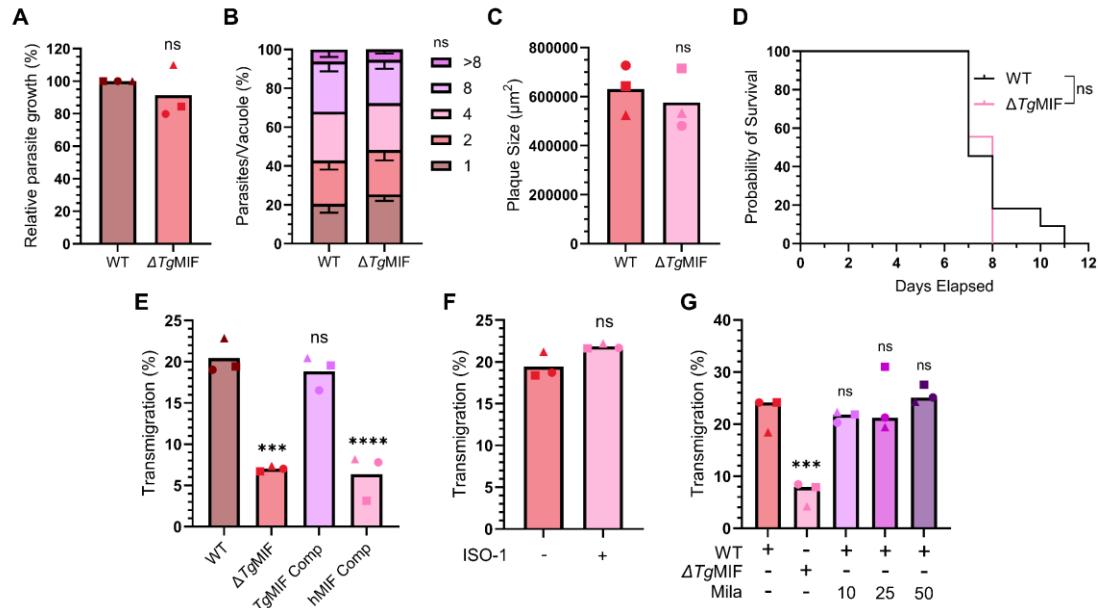
- 609 37. Sommerville, C. *et al.* Biochemical and Immunological Characterization of *Toxoplasma gondii*
610 Macrophage Migration Inhibitory Factor. *J. Biol. Chem.* **288**, 12733–12741 (2013).
- 611 38. Yoon, C. *et al.* *Toxoplasma gondii* macrophage migration inhibitory factor shows anti-*Mycobacterium*
612 *tuberculosis* potential via AZIN1/STAT1 interaction. *Sci. Adv.* **10**, (2024).
- 613 39. Okae, H. *et al.* Derivation of Human Trophoblast Stem Cells. *Cell Stem Cell* **22**, 50-63.e6 (2018).
- 614 40. Hori, T. *et al.* Trophoblast stem cell-based organoid models of the human placental barrier. *Nat.*
615 *Commun.* **15**, 962 (2024).
- 616 41. Wang, Y. *et al.* Genome-wide screens identify *Toxoplasma gondii* determinants of parasite fitness in
617 IFN γ -activated murine macrophages. *Nat. Commun.* **11**, 5258 (2020).
- 618 42. Singh, P. *et al.* HIV-1 Nef Breaches Placental Barrier in Rat Model. *PLoS One* **7**, e51518 (2012).
- 619 43. Chiba, H., Kojima, T., Osanai, M. & Sawada, N. The Significance of Interferon-Gamma-Triggered
620 Internalization of Tight-Junction Proteins in Inflammatory Bowel Disease. *Sci. STKE* **2006**, e1 (2006).
- 621 44. Mizutani, Y., Takagi, N., Nagata, H. & Inoue, S. Interferon- γ downregulates tight junction function,
622 which is rescued by interleukin-17A. *Exp. Dermatol.* **30**, 1754–1763 (2021).
- 623 45. Dragoni, S. *et al.* Endothelial MAPKs Direct ICAM-1 Signaling to Divergent Inflammatory Functions. *J.*
624 *Immunol.* **198**, 4074–4085 (2017).
- 625 46. Arcuri, F. *et al.* Expression of Macrophage Migration Inhibitory Factor Transcript and Protein by First-
626 Trimester Human Trophoblasts. *Biol. Reprod.* **60**, 1299–1303 (1999).
- 627 47. Arcuri, F. *et al.* Macrophage Migration Inhibitory Factor in the Human Endometrium: Expression and
628 Localization During the Menstrual Cycle and Early Pregnancy. *Biol. Reprod.* **64**, 1200–1205 (2001).
- 629 48. Martin, P. *et al.* Phase I study of the anti-CD74 monoclonal antibody milatuzumab (hLL1) in patients
630 with previously treated B-cell lymphomas. *Leuk. Lymphoma* **56**, 3065–3070 (2015).
- 631 49. Lue, H. *et al.* Rapid and transient activation of the ERK MAPK signalling pathway by macrophage
632 migration inhibitory factor (MIF) and dependence on JAB1/CSN5 and Src kinase activity. *Cell. Signal.*
633 **18**, 688–703 (2006).
- 634 50. Wang, Y. *et al.* JAM-A knockdown accelerates the proliferation and migration of human keratinocytes,
635 and improves wound healing in rats via FAK/Erk signaling. *Cell Death Dis.* **9**, 848 (2018).

- 636 51. Zheng, Y. *et al.* FAK Phosphorylation by ERK Primes Ras-Induced Tyrosine Dephosphorylation of
637 FAK Mediated by PIN1 and PTP-PEST. *Mol. Cell* **35**, 11–25 (2009).
- 638 52. Amin, M. A. *et al.* Migration inhibitory factor up-regulates vascular cell adhesion molecule-1 and
639 intercellular adhesion molecule-1 via Src, PI3 kinase, and NF κ B. *Blood* **107**, 2252–2261 (2006).
- 640 53. da Silva, R. J. *et al.* Intercellular adhesion molecule (ICAM)-1 is required to control *Toxoplasma gondii*
641 infection in uterine tissues and establish a successful gestation in a murine model of congenital
642 toxoplasmosis. *Placenta* (2025) doi:10.1016/j.placenta.2025.04.002.
- 643 54. Fan, Y. *et al.* The Role of ERK1/2 Signaling Pathway in Nef Protein Upregulation of the Expression of
644 the Intercellular Adhesion Molecule 1 in Endothelial Cells. *Angiology* **61**, 669–678 (2010).
- 645 55. Cheng, Q. *et al.* Macrophage Migration Inhibitory Factor Increases Leukocyte–Endothelial Interactions
646 in Human Endothelial Cells via Promotion of Expression of Adhesion Molecules. *J. Immunol.* **185**,
647 1238–1247 (2010).
- 648 56. Dietrich, J.-B. The adhesion molecule ICAM-1 and its regulation in relation with the blood-brain barrier.
649 *J. Neuroimmunol.* **128**, 58–68 (2002).
- 650 57. Joiner, K. A. & Roos, D. S. Secretory traffic in the eukaryotic parasite *Toxoplasma gondii*: less is more.
651 *J. Cell Biol.* **157**, 557–563 (2002).
- 652 58. Flieger, O. *et al.* Regulated secretion of macrophage migration inhibitory factor is mediated by a non-
653 classical pathway involving an ABC transporter. *FEBS Lett.* **551**, 78–86 (2003).
- 654 59. Ngobeni, R. *et al.* *Entamoeba histolytica*-Encoded Homolog of Macrophage Migration Inhibitory Factor
655 Contributes to Mucosal Inflammation during Amebic Colitis. *J. Infect. Dis.* **215**, 1294–1302 (2017).
- 656 60. Katri, N. J., Ke, H., McFadden, G. I., van Dooren, G. G. & Waller, R. F. Calcium negatively regulates
657 secretion from dense granules in *Toxoplasma gondii*. *Cell. Microbiol.* **21**, e13011 (2019).
- 658 61. Coppens, I., Andries, M., Liu, J. L. & Cesbron-Delaunay, M. F. Intracellular trafficking of dense granule
659 proteins in *Toxoplasma gondii* and experimental evidences for a regulated exocytosis. *Eur. J. Cell Biol.*
660 **78**, 463–472 (1999).
- 661 62. Huynh, M.-H. & Carruthers, V. B. Tagging of Endogenous Genes in a *Toxoplasma gondii* Strain
662 Lacking Ku80. *Eukaryot. Cell* **8**, 530–539 (2009).

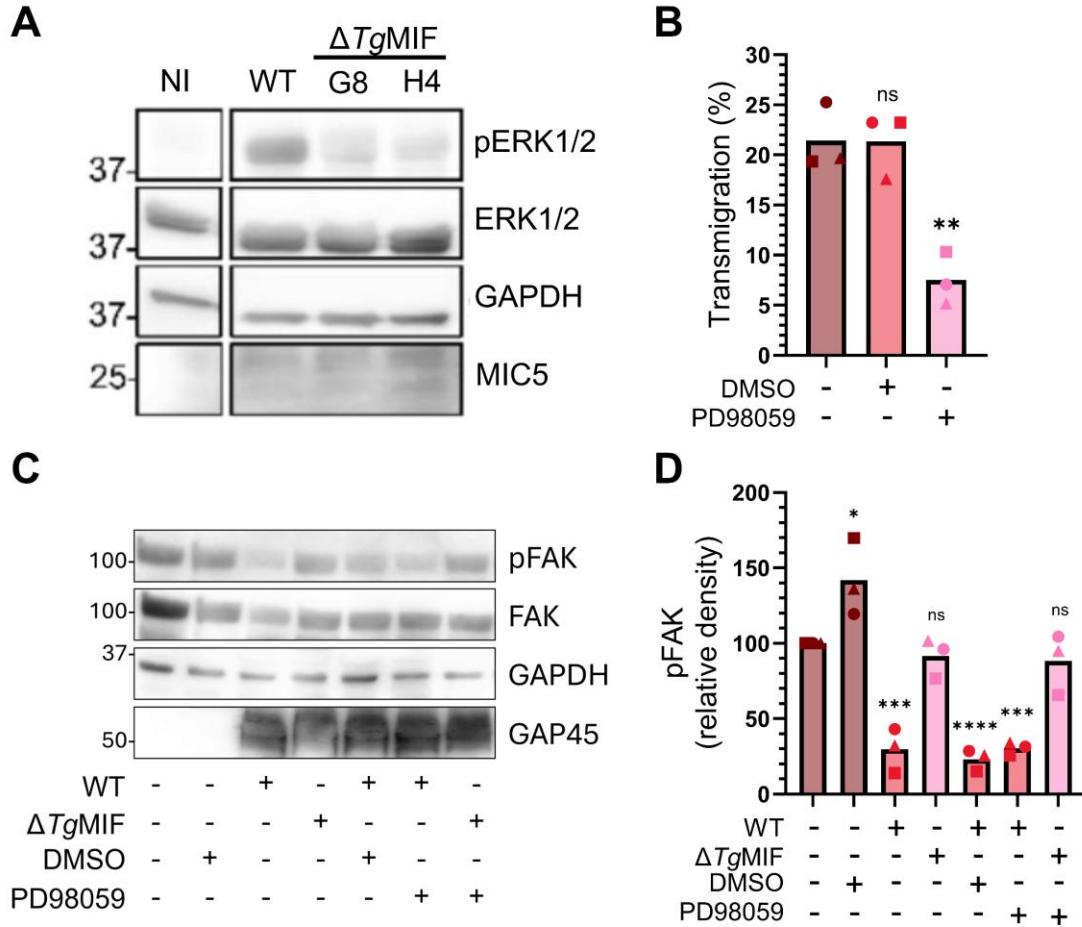

- 663 63. Kanková, S. & Flegr, J. Longer pregnancy and slower fetal development in women with latent
664 "asymptomatic" toxoplasmosis. *BMC Infect. Dis.* **7**, 114 (2007).
- 665 64. Deganich, M., Boudreux, C. & Benmerzouga, I. Toxoplasmosis Infection during Pregnancy. *Trop.*
666 *Med. Infect. Dis.* **8**, 3 (2022).
- 667 65. Sauvage, V. *et al.* Identification and expression analysis of ABC protein-encoding genes in
668 *Toxoplasma gondii*. *Toxoplasma gondii* ATP-binding cassette superfamily. *Mol. Biochem. Parasitol.*
669 **147**, 177–192 (2006).
- 670 66. Ehrenman, K. *et al.* Novel roles for ATP-binding cassette G transporters in lipid redistribution in
671 *Toxoplasma*. *Mol. Microbiol.* **76**, 1232–1249 (2010).
- 672 67. Carruthers, V. B. & Sibley, L. D. Mobilization of intracellular calcium stimulates microneme discharge
673 in *Toxoplasma gondii*. *Mol. Microbiol.* **31**, 421–428 (1999).
- 674 68. Norouzpour Deilami, K. *et al.* Excretory-secretory antigens: A suitable candidate for immunization
675 against ocular toxoplasmosis in a murine model. *Comp. Immunol. Microbiol. Infect. Dis.* **37**, 369–374
676 (2014).
- 677 69. Chen, J. *et al.* Excreted-secreted antigens of *Toxoplasma gondii* inhibit Foxp3 via IL-2Rγ/JAK3/Stats
678 pathway. *J. Cell. Biochem.* **119**, 10176–10185 (2018).
- 679 70. Chen, J. *et al.* *Toxoplasma gondii* excreted-secreted antigens suppress Foxp3 via PI3K-AKT-mTOR
680 signaling pathway. *J. Cell. Biochem.* **120**, 16044–16051 (2019).
- 681 71. Huang, C. Toll-like receptor 4 (TLR4) deficiency impedes *Toxoplasma gondii* excreted-secreted
682 antigens (ESA)-induced abortion. *Placenta* **154**, 1–8 (2024).
- 683 72. Sánchez-Zuno, G. A. *et al.* Canonical (CD74/CD44) and Non-Canonical (CXCR2, 4 and 7) MIF
684 Receptors Are Differentially Expressed in Rheumatoid Arthritis Patients Evaluated by DAS28-ESR. *J.*
685 *Clin. Med.* **11**, 120 (2021).
- 686 73. Bernhagen, J. *et al.* MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and
687 atherogenic cell recruitment. *Nat. Med.* **13**, 587–596 (2007).
- 688 74. Alampour-Rajabi, S. *et al.* MIF interacts with CXCR7 to promote receptor internalization, ERK1/2 and
689 ZAP-70 signaling, and lymphocyte chemotaxis. *FASEB J.* **29**, 4497–4511 (2015).

- 690 75. Schipper, S. *et al.* Characterization of *Plasmodium falciparum* macrophage migration inhibitory factor
691 homologue and its cysteine deficient mutants. *Parasitol. Int.* **87**, 102513 (2022).
- 692 76. Ivey, N. S. *et al.* Association of FAK activation with lentivirus-induced disruption of blood-brain barrier
693 tight junction-associated ZO-1 protein organization. *J. Neurovirol.* **15**, 312–323 (2009).
- 694 77. Aggarwal, S., Suzuki, T., Taylor, W. L., Bhargava, A. & Rao, R. K. Contrasting effects of ERK on tight
695 junction integrity in differentiated and under-differentiated Caco-2 cell monolayers. *Biochem. J.* **433**,
696 51–63 (2011).
- 697 78. Weight, C. M., Jones, E. J., Horn, N., Wellner, N. & Carding, S. R. Elucidating pathways of *Toxoplasma*
698 *gondii* invasion in the gastrointestinal tract: involvement of the tight junction protein occludin. *Microbes*
699 *Infect.* **17**, 698–709 (2015).
- 700 79. Briceño, M. P. *et al.* *Toxoplasma gondii* Infection Promotes Epithelial Barrier Dysfunction of Caco-2
701 Cells. *J. Histochem. Cytochem.* **64**, 459–469 (2016).
- 702 80. Furtado, J. M. *et al.* *Toxoplasma gondii* tachyzoites cross retinal endothelium assisted by intercellular
703 adhesion molecule-1 in vitro. *Immunol. Cell Biol.* **90**, 912–915 (2012).
- 704 81. Furtado, J. M., Bharadwaj, A. S., Ashander, L. M., Olivas, A. & Smith, J. R. Migration of toxoplasma
705 *gondii*-infected dendritic cells across human retinal vascular endothelium. *Invest. Ophthalmol. Vis. Sci.*
706 **53**, 6856–6862 (2012).
- 707 82. Singh, V., Kaur, R., Kumari, P., Pasricha, C. & Singh, R. ICAM-1 and VCAM-1: Gatekeepers in various
708 inflammatory and cardiovascular disorders. *Clin. Chim. Acta* **548**, 117487 (2023).
- 709 83. Timmerman, I., Daniel, A. E., Kroon, J. & van Buul, J. D. Leukocytes Crossing the Endothelium: A
710 Matter of Communication. in *Int. Rev. Cell Mol. Biol.* vol. 322 281–329 (Elsevier Inc., 2016).
- 711 84. Hildebrandt, F. *et al.* scDual-Seq of *Toxoplasma gondii*-infected mouse BMDCs reveals heterogeneity
712 and differential infection dynamics. *Front. Immunol.* **14**, 1224591 (2023).
- 713 85. Zhou, N. *et al.* *TgMIF* Promotes Hepatocyte Pyroptosis and Recruitment of Proinflammatory
714 Macrophages During Severe Liver Injury in Acute Toxoplasmosis. *J. Infect. Dis.* **227**, 1417–1427
715 (2022).

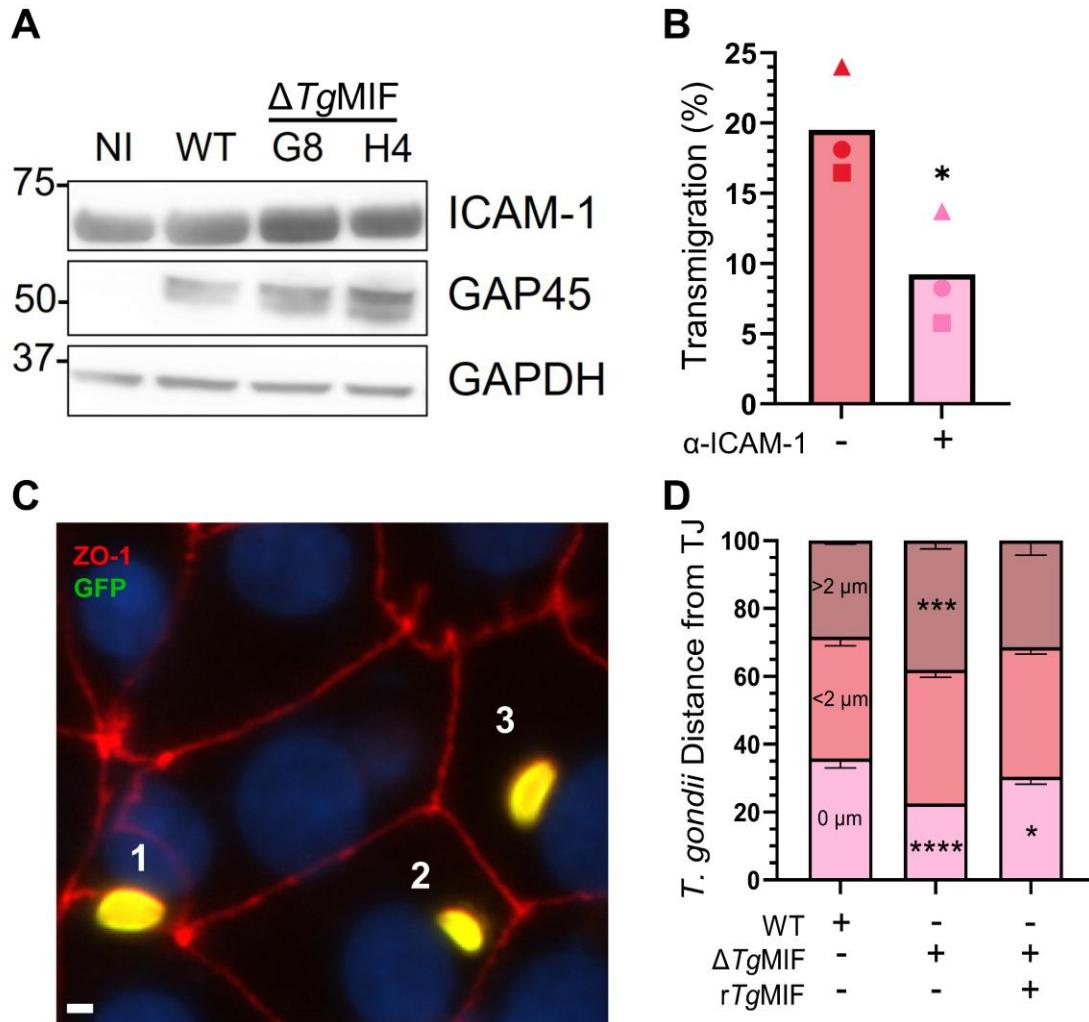
- 716 86. Sidik, S. M., Hackett, C. G., Tran, F., Westwood, N. J. & Lourido, S. Efficient Genome Engineering of
717 *Toxoplasma gondii* Using CRISPR/Cas9. *PLoS One* **9**, e100450 (2014).
- 718 87. Shen, B., Brown, K. M., Lee, T. D. & Sibley, L. D. Efficient Gene Disruption in Diverse Strains of
719 *Toxoplasma gondii* using CRISPR/CAS9. *MBio* **5**, e01114-14 (2014).
- 720 88. Rosowski, E. E. *et al.* Strain-specific activation of the NF-kappaB pathway by GRA15, a novel
721 *Toxoplasma gondii* dense granule protein. *J. Exp. Med.* **208**, 195–212 (2011).
- 722 89. Mukhopadhyay, D. & Saeij, J. P. J. Assays to Evaluate *Toxoplasma*-Macrophage Interactions.
723 *Methods Mol. Biol.* **2071**, 347–370 (2020).

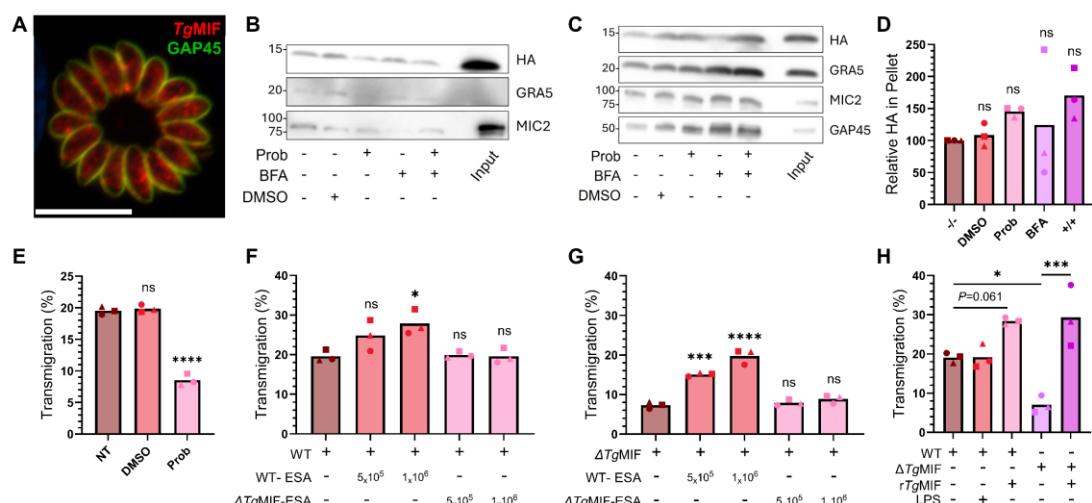

724
725

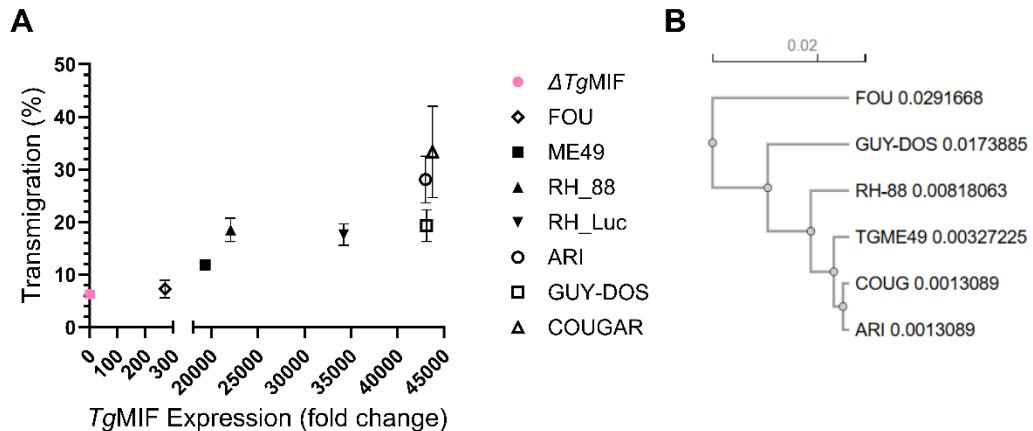
FIGURES



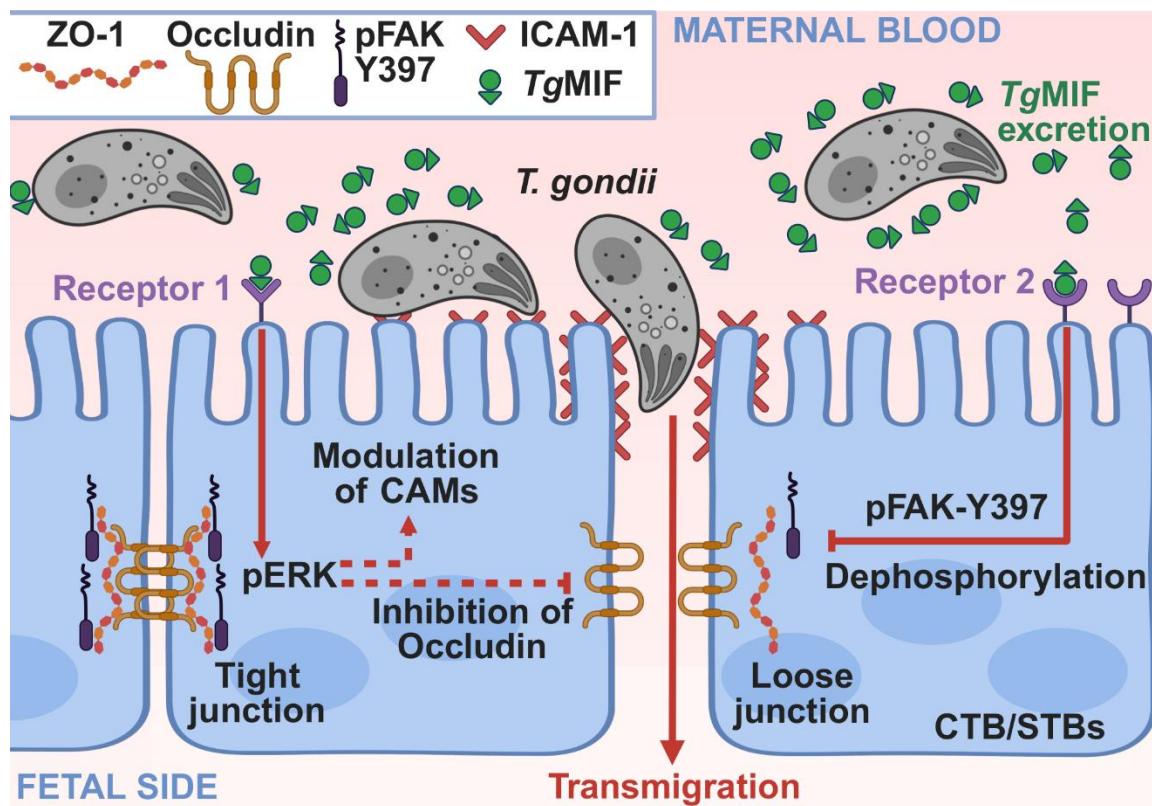
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741


Figure 1. Validation of the human *in vitro* placental barrier (PB). **(A)** The tight junction structure in the placental barrier, stained with anti-ZO-1 antibody (red). Cell nucleus (blue). (Scale bar, 50 μm). **(B)** Syncytialization in the placental barrier, stained with anti-syndecan-1 antibody (red). Cell nucleus (blue). (Scale bar, 50 μm). **(C)** TEER measurements on HFF monolayer and the placental barrier. ($n=3$, means \pm SD). Student's t-test, $*P = 0.0138$. **(D)** Permeability of HFF monolayer and the placental barrier to 40kDa FITC-Dextran molecule. ($n=3$, means \pm SD). Student's t-test, $**P = 0.0046$. **(E)** RH-Luc parasite growth within 24 hours was quantified via luciferase assay in HFF monolayer and the placental barrier. ($n=3$, means \pm SD). Student's t-test, $***P = 0.0001$. **(F)** RH-Luc parasite growth within 24 hours was quantified by counting the number of parasites per vacuole in HFF monolayer and the placental barrier. ($n=3$, means \pm SD). Two-way ANOVA with Sidak's multiple comparisons, ns (not significant), $*P < 0.05$, $***P < 0.0001$. **(G)** RH-Luc parasite transmigration within 16 hours across HFF monolayer or the placental barrier. ($n=3$, means \pm SD). Student's t-test, $**P = 0.0012$. **(H)** RH-Luc parasite transmigration across the placental barrier, pre-treated or not with IFN- γ [100 ng/ml] or Nef [500 ng/ml]. ($n=3$, means \pm SD). One-way ANOVA with Dunnett's multiple comparisons, ns (not significant).


742
743 **Figure 2.** *TgMIF* mediates the transmigration of extracellular parasites across the placental barrier. **(A)** WT
744 (RH-Luc) and $\Delta TgMIF$ parasite growth in HFF within 24 hours was quantified by luciferase assay. ($n=3$,
745 means \pm SD). Student's t-test, ns (not significant). **(B)** WT and $\Delta TgMIF$ parasite growth in HFF within 24
746 hours was quantified by counting the number of parasites per vacuole. ($n=3$, means \pm SD). Two-way
747 ANOVA with Sidak's multiple comparisons, ns (not significant). **(C)** WT and $\Delta TgMIF$ parasite plaque size
748 was measured in the HFF monolayer after 5 days of infection. ($n=3$, means \pm SD). Student's t-test, ns (not
749 significant). **(D)** Survival of CD-1 mice infected with 2,000 WT or $\Delta TgMIF$ parasites. ($n=9$). Kaplan-Meier
750 survival analysis, ns (not significant). **(E)** WT, $\Delta TgMIF$, *hMIF* compl, and *TgMIF* compl parasites
751 transmigration across the placental barrier. ($n=3$, means \pm SD). One-way ANOVA with Dunnett's multiple
752 comparisons, ns (not significant), *** $P = 0.0001$, **** $P < 0.0001$. **(F)** WT parasite transmigration across the
753 placental barrier treated or not for 30 minutes with ISO-1 [10 μM]. ($n=3$, means \pm SD). Student's t-test, ns
754 (not significant). **(G)** WT and $\Delta TgMIF$ parasites transmigration across the placental barrier pre-treated for
755 24 hours or not with the indicated $\mu\text{g}/\text{mL}$ concentration of CD74 neutralizing antibody Milatuzumab (Mila).
756 ($n=3$, means \pm SD). One-way ANOVA with Dunnett's multiple comparisons, ns (not significant), *** $P =$
757 0.0009.
758


Figure 3. *TgMIF* modulates the ERK MAPK pathway and induces FAK dephosphorylation. **(A)** SDS-PAGE analysis of lysates from placental barriers infected or not (NI) for 45 minutes with WT (RH-Luc) or $\Delta TgMIF$ parasite, blotted with anti-phospho ERK1/2 (pERK1/2), anti-ERK1/2, anti-GAPDH (cell loading control), and anti-MIC5 (parasite loading control), as well as their respective secondary HRP-antibodies. **(B)** WT parasite transmigration across the placental barrier pre-treated 24 hours or not with PD98059 [50 μ M] or vehicle DMSO. ($n=3$, means \pm SD). One-way ANOVA with Dunnett's multiple comparisons, ns (not significant), ** P = 0.0026. **(C)** SDS-PAGE analysis of lysates from placental barriers infected pre-treated 24 hours or not with PD98059 [50 μ M] or DMSO vehicle, and infected or not for 5 hours with WT or $\Delta TgMIF$ parasite. The blotting was performed with anti-phospho FAK (pFAK), anti-FAK, anti-GAPDH (cell loading control), and anti-GAP45 (parasite loading control), along with their respective secondary HRP antibodies. **(D)** Relative quantification of pFAK in each condition from (C) after normalization with GAPDH. ($n=3$, means \pm SD). One-way ANOVA with Dunnett's multiple comparisons, ns (not significant), *** P < 0.001, **** P < 0.0001.

773
774 **Figure 4.** $TgMIF$ mediates extracellular parasite localization at the cellular tight junctions. **(A)** SDS-PAGE
775 analysis of lysates from placental barriers infected or not (NI) for 5 hours with WT (RH-Luc) or $\Delta TgMIF$
776 parasites, blotted with anti-ICAM-1, anti-GAPDH (cell loading control), and anti-GAP45 (parasite loading
777 control), as well as their respective secondary HRP-antibodies. **(B)** WT parasites transmigration across the
778 placental barrier pre-treated for 6 hours or not with an ICAM-1 neutralizing antibody [5 μ g/mL]. ($n=3$, means
779 \pm SD). Student's t-test, $*P = 0.0349$. **(C)** Localization of extracellular WT and $\Delta TgMIF$ parasites on the
780 surface of the placental barrier, treated or not with r $TgMIF$ parasites, 5 hours after infection. The staining
781 was performed with anti-ZO-1 (red), anti-GAP45 (green), and nucleus (blue). (1) represents parasites
782 localized at the tight junction, (2) parasites within 2 μ m from the tight junction, and (3) parasites at a distance
783 greater than 2 μ m from the tight junctions. (Scale bar, 2 μ m). **(D)** Quantification of parasite localization as
784 defined in (C), for WT and $\Delta TgMIF$ parasites. ($n=3$, 300 random parasites each, means \pm SD). Two-way
785 ANOVA with Dunnett's multiple comparisons, ns (not significant), $*P = 0.0306$, $***P = 0.0002$, $****P <$
786 0.0001.
787



788
 789 **Figure 5.** *TgMIF* is a soluble, excreted effector. **(A)** Intracellular localization of *TgMIF*-HA within tachyzoites
 790 after 48 hours of infection in HFF. Staining with anti-HA (red) and anti-GAP45 (green) antibodies. (Scale
 791 bar, 10 μ m). **(B-C)** SDS-PAGE analysis of extracellular *TgMIF*-HA-tagged parasites incubated for 3 hours
 792 in PBS/FBS at 37 °C in the presence or absence of Probenecid (Prob) [10 μ M], Brefeldin A (BFA) [10 μ M],
 793 or DMSO vehicle. For (B), ESA was TCA precipitated, and in (C), the parasite pellet was lysed. Input = 10%
 794 non-treated parasite pellet. The blotting was performed with anti-HA, anti-GRA5, anti-MIC2, and anti-
 795 GAP45 antibodies, with anti-GAP45 as a parasite loading control. **(D)** Relative quantification of *TgMIF*-HA
 796 left in the parasite pellet of each condition from (C) after normalization with GAP45. ($n=3$, means \pm SD).
 797 One-way ANOVA with Dunnett's multiple comparisons, ns (not significant). **(E)** Transmigration across the
 798 placental barrier of WT parasites treated or not (NT) with Prob [10 μ M] or DMSO vehicle. ($n=3$, means \pm
 799 SD). One-way ANOVA with Dunnett's multiple comparisons, ns (not significant), **** $P < 0.0001$. **(F)** WT
 800 parasites transmigration across the placental barrier with or without ESA from WT or Δ TgMIF parasites
 801 (equivalent of 5×10^5 and 1×10^6 parasites). ($n=3$, means \pm SD). One-way ANOVA with Dunnett's multiple
 802 comparisons, ns (not significant), * $P = 0.0226$. **(G)** Δ TgMIF parasites transmigration across the placental
 803 barrier with or without ESA from WT or Δ TgMIF parasites (equivalent of 5×10^5 and 1×10^6 parasites). ($n=3$,
 804 means \pm SD). One-way ANOVA with Dunnett's multiple comparisons, ns (not significant), *** $P = 0.0006$,
 805 **** $P < 0.0001$. **(H)** WT and Δ TgMIF parasites transmigration across the placental barrier in the absence
 806 or presence of 100 ng/mL rTgMIF or 100 ng/mL LPS. ($n=3$, means \pm SD). One-way ANOVA with Sidak's
 807 multiple comparisons, ns (not significant), * $P = 0.0149$, *** $P = 0.0002$.

809
810 **Figure 6.** *TgMIF* expression level determines the transmigration capacity of *T. gondii* strains. **(A)** Positive
811 correlation between *T. gondii* strain transmigration capacity (y-axis) and *TgMIF* mRNA expression level in
812 each strain (x-axis). *TgMIF* mRNA level in each strain was normalized to *TubA1* level, and $\Delta TgMIF$ serves
813 as the reference strain. ($n=3$, means \pm SD). Spearman correlation, $r = 0.9524$, $P = 0.001$. **(B)** Guide tree
814 depicting the relatedness of the strains based on the alignment of their promoter sequence using Clustal
815 Omega.

816

817
818 **Figure 7.** Model of *TgMIF* mediating *T. gondii* transmigration across the placental barrier. Extracellular
819 parasites on the maternal side of the barrier excrete *TgMIF*, which then interacts with unknown receptors 1
820 and 2. Via receptor 1 and the ERK MAP1 pathway, *TgMIF* mediates modulation of ICAMs and/or occludin
821 proteins. Via receptor 2, *TgMIF* mediates the dephosphorylation of FAK. Together, increased parasite
822 adhesion to tight junctions and loosening of junctions facilitate transmigration toward the fetal side of the
823 barrier.
824