

**Project Requirements Form USDOT
CREATE UTC Contract Number 69A3552348330
Center Lead: Texas State University; Texas State University**

Project Requirements Form USDOT
CREATE UTC Contract Number 69A3552348330
Center Lead: Texas State University; Texas State University

US DOT Priorities: *Section left blank until USDOT's new priorities and RD&T strategic goals are available in Spring 2026.*

Outputs: Stochastic programming models are among the state-of-the-art optimization methods for handling uncertainty in model parameters, such as the magnitude of flooding. The result of this project is an up-to-date framework suitable for addressing other ways to improve the RFTN proposed in Puerto Rico's 2050 Long Range Multimodal Transportation Plan, such as utilizing the marine-based M2 freight network to a greater extent or adding last-mile delivery as a new mode for goods delivery. Additionally, the literature review, collected data, model and results are expected to support the subsequent development of a more comprehensive model of Puerto Rico's RFTN to be performed by faculty at UPRM.

Dr. Novoa anticipates developing partnerships with the Center for Catastrophe Modeling and Resilience at Lehigh University and the Consortium for Enhancing Resilience and Catastrophe Modeling (CERCat). Other partnerships are with representatives of the Puerto Rico Department of Transportation and Public Works, the Puerto Rico Highway and Transportation Authority, US DOT, and partner consultants or private companies working with these government agencies.

Outcomes/Impacts: The project's products include a data-driven computerized model and a written document that provides a research methodology for identifying and assessing decisions and responses (i.e., recourse actions) to minimize the impact of coastal flooding, using Puerto Rico's main ports and its RFTN infrastructure as a case study. The results and recommendations from this project will be disseminated in a presentation and a proceedings paper at a conference on transportation, supply chain, logistics, or operations research. The anticipated relatively low running time of the models will permit multiple optimizations to be performed before and during flooding-related events. It will positively impact the durability, reliability, and cost of operating the ports and the RFTN in Puerto Rico during disaster situations. Also, it will be possible to extend this impact to other US ports by updating the model input data and the RFTN to portray other US freight ports.

Final Research Report: URL to final Report will be provided upon completion.