

**Project Requirements Form USDOT
CREATE UTC Contract Number 69A3552348330
Center Lead: Texas State University; Oregon State University**

loading tests under representative bridge loadings to quantify stiffness, load transfer, crack initiation/propagation, fatigue life, and interface degradation; (4) analytical models that couple structural mechanics and interface behavior to predict long-term performance, stress distributions, and fatigue life; and (5) design recommendations, detailing guidelines for UHPC thickness, rib size and spacing, and composite connector details. In addition, through our partnership with a large national bridge design firm (HNTB) we will develop a prototype replacement deck design for an in-service bridge.

Outcomes/Impacts: The proposed UHPC deck system with embedded structural steel sections has the potential to improve long-span bridge performance in several ways. UHPC's high compressive strength, low permeability, and crack-bridging capabilities mitigate fatigue cracking, corrosion initiation, and deck deterioration, combined with the composite steel sections that provide improved structural capacity and stiffness will improve the durability of bridge decks. The proposed system eliminates welding and fitup requirements to enhance fatigue life relative to conventional OSDs thereby reducing the chance of progressive deck failure from fracture. From a cost and life-cycle perspective, the system costs could be lower than conventional steel OSDs while reduced maintenance, fewer overlays, and longer intervals between rehabilitation provide even more incentives for adoption. The system also minimizes traffic disruptions from reduced reconstruction needs. Together, these benefits position the UHPC composite with steel rib decks system as a next-generation alternative deck compared to conventional OSDs for demanding long-span and coastal applications.

Replacing conventional orthotropic steel plate decks that are not achieving their expected design lives with the proposed UHPC-steel composite system directly advances CREATE's objectives of increasing lifespan and reducing maintenance burdens, especially in congested and challenging coastal environments. The project's deliverables, including experimental data, design models, and guidelines support CREATE's mission to translate innovative research into practice.

Final Research Report: URL to final Report will be provided upon completion.