## Key HW 7_4

1. Work problem 7.22

We worked this already for HW7_3
2. Work problem 7.23

Problem 7.21

$$
\mathcal{E}=-\frac{d \Phi}{d t}=-M \frac{d I}{d t}=-M k
$$



It's hard to calculate $M$ using a current in the little loop, so, exploiting the equality of the mutual inductances, I'll find the flux through the little loop when a current $I$ flows in the big loop: $\Phi=M I$. The field of one long wire is $B=\frac{\mu_{0} I}{2 \pi s} \Rightarrow \Phi_{1}=\frac{\mu_{0} I}{2 \pi} \int_{a}^{2 a} \frac{1}{s} a d s=\frac{\mu_{0} I a}{2 \pi} \ln 2$, so the total flux is

$$
\Phi=2 \Phi_{1}=\frac{\mu_{0} I a \ln 2}{\pi} \Rightarrow M=\frac{\mu_{0} a \ln 2}{\pi} \Rightarrow \mathcal{E}=\frac{\mu_{0} k a \ln 2}{\pi}, \text { in magnitude. }
$$

Direction: The net flux (through the big loop), due to $I$ in the little loop, is into the page. (Why? Field lines point in, for the inside of the little loop, and out everywhere outside the little loop. The big loop encloses all of the former, and only part of the latter, so net flux is inward.) This flux is increasing, so the induced current in the big loop is such that its field points out of the page: it flows counterclockwise.
3. Determine the Neumann formula for the self-induction of a circular coil with radius a. Use the same approach as on page 322 , so first determine the flux in terms of $B$, then in terms of $A$ and then substitute A with 5.66.

Use the same approach as on page 322. The flux through the coil is per definition:

$$
\Phi=\iint \vec{B} \bullet d \vec{a}=\iint \nabla \times \vec{A} \bullet d \vec{a}
$$

Now use Stokes theorem, i.e.

$$
\Phi=\oint \vec{A} \bullet d \vec{l}
$$

Realize that $A$ is the magnetic vector potential of the same coil. Now use expression 5.66 on page 245 , to determine A from the current through the loop:

$$
\Phi=\oint \frac{\mu_{o}}{4 \pi} \oint \frac{I}{r_{s}} d \vec{l} \cdot \bullet d \vec{l}=\frac{\mu_{o} I}{4 \pi} \oint \oint \frac{d \vec{l} \cdot \bullet d \vec{l}}{r_{s}}
$$

L can now be found by dividing by I, so

$$
L=\frac{\mu_{o}}{4 \pi} \oint \oint \frac{d \vec{l} \cdot \bullet \vec{l}}{r_{s}}
$$

Which is exactly identical to the Neumann equation for mutual inductance.

