
Key HW 8_1 

 

1. Increasing as the Poynting vector points into the capacitor; the direction of B implies that dE/dt 

is in the same direction as E, so increasing as Ampere’s-Maxwell’s law does not have the minus 

sign. 

2. Use Gauss’ law to determine the electric field: 
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Use Ampere-Maxwell’s law to determine the magnetic field: 
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Poynting vector: 
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Power flux: 
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Total energy in capacitor: 
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When taking the derivative of this will give the power flux. 



 

3. Decreasing in time as on the surface of the inductor is pointing outward; induced electric field is 

counter clockwise so emf is pointing up in the same direction as B, so B is decreasing (Lenz’ law). 

4. Use ampere’s law to determine the magnetic field in the inductor (note that because we assume 

that the current is linear proportional in time that the E is constant and Maxwell’s corrections in 

Ampere’s law is zero):  
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Use Faraday’s law to find E at P: 
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Calculate the pointing vector: 
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Integrate over surface of device to find energy flux: 
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Total energy stored in inductor integrate energy density over volume of inductor: 
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Taking the derivative would give P. 

 

 



 

5. S is pointing into the device, so current should be increasing. 

6. S is pointing out the device, so current should be decreasing. 

 

  



 

 

P7. Note that the current and voltage across on inductor are not in phase with each other. Faraday’s law 

tells us that: 
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Where the left side is the induced emf. Note that the magnetic field of a solenoid can be obtained from 

Ampere’s law and is proportional to the current, or 
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When using the sign convention common in engineering (i.e. direction of the current flows from the high 

electric potential lead to the low electric potential lead and replacing the emf by V we get: 

 
dt

dI
LV            [3] 

This is a well-known result and shows that the current through an inductor and the voltage across it are 

related via a derivative. This equation leads to an interesting I-V relation for an inductor. If we assume 

that the inductor is connected to a function generator that sources a sinusoidal current  tII o  sin   

through the inductor (see Fig. 1a) then the voltage across the inductor can be calculated from equation 

[3], and is equal to: 

    tLItI
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d
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So current and voltage are no longer in phase, but phase shifted. The current lags 90 degrees behind the 

voltage. The current voltage relation for an inductor assuming the current is a sine function is given in 

the graph shown in the figure below.  



  

Fig. 1: (a) Inductor connected to function generator; (b) voltage (red) across and current (blue) through an 

inductor. 

The energy flow in the circuit is given by the following relation: 

 IVP   

Note that the sign of the power flips and that during the period A the power is positive since both 

current and electric are potential and energy is transported from the function generator to the inductor. 

During the 2nd interval (B) the voltage is negative and the current still positive, so the power is negative 

and energy is transported from the inductor back into the function generator. During the third interval 

C, the power is again positive and energy is poured back into the inductor etc.  

This flow of energy can also be understood with the Poynting vector approach. Note however that now 

we have to realize that the electric potential changes in the circuit and also the charge on inductor leads. 

The figure below shows the current and the wire charge for all four periods.  

  

   

Fig. 2: surface charge and circuit current for interval A, B, C, and D (see Fig. 1 for definition of intervals). 



We can use the right hand rule and our knowledge of electrostatics to include the direction of the E and 

B vectors at different positions along the inductors leads. Furthermore we can use the information 

Maxwell’s equations to include the E and the B vector in the inductor: 
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Note that for interval A, the current is increasing, so the flux is increasing, so the curl of E should be 

opposite to B, etc. etc. The figure below shows the E-field (red) and the B-fields (green). 

  

  

Fig. 3: B-field (green) and E-field at different positions in the circuit for interval A, B, C, and D. 

Now it is easy to complete the exercise by constructing the S vector from E and B according to: 
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The results of this exercise is shown in Fig. 4 below. Note that the energy flow obtained from S for the 

various intervals is similar to the energy flow obtained from the sign of P. 



  

  

Fig. 4: S vector (blue) incorporated in the figure for interval A, B, C, and D. 

 

 

Adapted from MIT OPEN COURSEWARE: http://ocw.mit.edu/courses/physics/8-02sc-physics-ii-

electricity-and-magnetism-fall-2010/electromagnetic-waves/energy-and-momentum-in-

electromagnetic-waves/ 
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