A. An electromagnetic plane wave is traveling through region **1** (a material with index of refraction n_1), and encounters a material in region **2** (index of refraction n_2), with the boundary located at z = 0. The incident wave (I) gives rise to a reflected wave (R) and a transmitted wave (T).

With the incident wave linearly polarized in the *x*-direction, the electric fields of the incident, reflected and transmitted waves can each be represented by the following complex exponentials:

$$\vec{\mathbf{E}}_{\mathrm{I}}(\vec{r},t) = E_{\mathrm{I}} \exp\left[i\left(k_{\mathrm{I}}z - \omega_{\mathrm{I}}t\right)\right]\hat{x}$$

$$\vec{\mathbf{E}}_{\mathrm{R}}(\vec{r},t) = E_{\mathrm{R}} \exp[i(-k_{\mathrm{R}}z - \omega_{\mathrm{R}}t + \delta_{\mathrm{R}})] \hat{x}$$

$$\vec{\mathbf{E}}_{\mathrm{T}}(\vec{r},t) = E_{\mathrm{T}} \exp \left[i\left(k_{\mathrm{T}}z - \omega_{\mathrm{T}}t\right)\right] \hat{x}$$

According to Faraday's Law, the parallel component of the total electric field on either side of the boundary must be the same at all times:

$$\vec{\mathbf{E}}_{1}^{\parallel}(z=0,t) = \vec{\mathbf{E}}_{2}^{\parallel}(z=0,t) \longrightarrow \vec{\mathbf{E}}_{1}^{\parallel}(z=0,t) + \vec{\mathbf{E}}_{R}^{\parallel}(z=0,t) = \vec{\mathbf{E}}_{T}^{\parallel}(z=0,t)$$

Use the information given to re-write this boundary condition using the complex exponential notation from above.

Now, write out this boundary condition at t = 0.

B. The arrows in the two diagrams at right represent the electric fields of the incident and transmitted waves in the complex plane at t=0. Notice that in this case $E_{\rm I}>E_{\rm T}$

In order for the following boundary condition to be satisfied

$$E_{\rm I} + E_{\rm R} \exp(i\delta_{\rm R}) = E_{\rm T}$$

what is the phase shift $\delta_{\rm R}$ for the reflected wave? [Hint: $\exp(i\pi) = -1$]

Use the axes at right to draw an arrow representing the magnitude and direction of the electric field for the *reflected* wave at t=0.

C. With the *incident* E-field at t=0 shown below at left, use the remaining axes to draw arrows representing the E-fields of the *reflected* and *transmitted* waves for the case $E_{\rm T} > E_{\rm I}$. Be sure to label your arrows.

What is the phase shift $\delta_{\rm R}$ of the *reflected* wave in this case?

Use the diagram above to draw the *incident* E-field at a later time $\omega_I t = \pi/4$. Be sure to think carefully about which direction $E_I \exp(-i\omega_I t)$ rotates in the complex plane.

Boundary conditions must be satisfied at all times (not just at t=0). If we solve for $E_{\rm I}$ in the time-dependent equation from the first page:

$$E_{\rm I} = \pm E_{\rm R} \exp \left[-i \left(\omega_{\rm R} - \omega_{\rm I} \right) t \right] + E_{\rm T} \exp \left[-i \left(\omega_{\rm T} - \omega_{\rm I} \right) t \right]$$

Notice that the quantity on the *left side* of the equation is an entirely real constant. For this equality to hold at all times, what must be true about the quantities $(\omega_R - \omega_I)$ and $(\omega_T - \omega_I)$? Briefly explain your reasoning.

D. With the *incident* E-field at $\omega_i t = \pi/4$ shown below at left, use the remaining axes to draw arrows representing the E-fields of the reflected and transmitted waves for the case $E_{\rm T} > E_{\rm I}$. Be sure to label your arrows.

E. Assume that both materials have a negligible magnetic permeability ($\mu_{\rm l}=\mu_{\rm l}=\mu_{\rm 0}$). The following four boundary conditions for the electric and magnetic fields must be true at the interface of materials 1 & 2:

$$i) \ \varepsilon_1 E_1^{\perp} = \varepsilon_2 E_2^{\perp} \qquad ii) \ B_1^{\perp} = B_2^{\perp}$$

$$ii)$$
 $B_1^{\perp} = B_2^{\perp}$

$$iii) \quad \mathbf{E}_1^{\parallel} = \mathbf{E}_2^{\parallel} \qquad iv) \quad \mathbf{B}_1^{\parallel} = \mathbf{B}_2^{\parallel}$$

$$iv$$
) $\mathbf{B}_1^{\parallel} = \mathbf{B}_2^{\parallel}$

Which of these four boundary conditions (i-iv) could be used to get the following equation? [$v_1 \& v_2$ are the wave speeds in regions 1 & 2]

$$E_I - E_R e^{i\delta_R} = \frac{v_1}{v_2} E_T$$

[Hint: Recall that for EM plane waves $\vec{k} \times \vec{E} = \omega \vec{B}$.]

Show how you can arrive at this boundary equation by taking the direction of propagation for the reflected wave into consideration.

F. For simplicity, let $v_1/v_2 = n_2/n_1 \equiv \beta$ in these two boundary equations, where $E_{\rm R}$ could be positive or negative, depending on the phase shift:

(Eq. I)
$$E_{\rm I} + E_{\rm R} = E_{\rm T}$$
 (Eq. II) $E_{\rm I} - E_{\rm R} = \beta E_{\rm T}$

Use equations I & II to solve for $E_{\rm T}$ in terms of $E_{\rm I}$. Explain in words whether your answer makes sense in the limit $n_2 \to n_1$.

Use this result to solve for $E_{\rm R}$ in terms of $E_{\rm I}$. Explain in words whether your answer makes sense in the limit $n_2 \to n_1$.

For what values of $\beta = n_2/n_1$ will the *reflected* wave be 180° out of phase with the incident wave?

If the *reflected* wave is 180° out of phase with the incident wave, does this mean that light in medium 2 travels *faster* or *slower* than light in medium 1?