Assignment 2.1

1. Show/Proof that $n(x)$ written as a Fourier series (equation 4) has a periodicity of a.
2. Show/Proof that the complex Fourier series given by equation (5) is only real if n_{-p} is the complex conjugated of n_{p}.
3. Show/Proof that the values of the constants n_{p} can be calculated from $n(x)$ using equation (10).

Read the reciprocal lattice vector section on page 29 and 32 and then answer the following questions:
4. Explain why Kittel's definition of b1, b2, and b3, is the same as the following definition that is more common in literature:

$$
\begin{aligned}
& \vec{b}_{1}=2 \pi \frac{\vec{a}_{2} \times \vec{a}_{3}}{\vec{a}_{1} \bullet \vec{a}_{2} \times \vec{a}_{3}} \\
& \vec{b}_{2}=2 \pi \frac{\vec{a}_{3} \times \vec{a}_{1}}{\vec{a}_{2} \bullet \vec{a}_{3} \times \vec{a}_{1}} \\
& \vec{b}_{3}=2 \pi \frac{\vec{a}_{1} \times \vec{a}_{2}}{\vec{a}_{3} \bullet \vec{a}_{1} \times \vec{a}_{2}}
\end{aligned}
$$

5. Why would we call $\mathbf{b}_{1}, \mathbf{b}_{2}$, and $\mathbf{b}_{\mathbf{3}}$ reciprocal lattice vectors? Explain reciprocal!
6. Show/proof that the 3D electron density function $n(r)$ is periodic in a_{1}, a_{2}, a_{3} or any linear combination of those lattice vectors.
7. Work problem 1 at the end of chapter 2.
8. Work Problem 4 at the end of chapter 2.
