1. Give the relation that expresses the reciprocal lattice vector **b**₁ in terms of the crystal lattice vectors, **a**₁, **a**₂, and **a**₃.

- 2. Give the diffraction condition in terms of k', k, and G where G is equal to a particular reciprocal lattice vector.
- 3. Give an expression for the structure factor S_G in terms of the electron density $n(\mathbf{r})$ and \mathbf{G} .
- 4. Give an expression for the atomic form factor f_j in terms of the electron density n_j(r) and G if the electron concentration is spherically symmetric about the origin.
- 5. Give an expression for the Lennard Jones potential between two atoms that interact according to VW interaction.
- 6. Give an expression for the interaction energy between two ions I and j in an ionic crystal.
- 7. Give the relations between the normal strain components, e_{xx} , e_{yy} , e_{zz} and the components of the displacement vector, i.e. $u(\mathbf{r})$, $v(\mathbf{r})$ and $w(\mathbf{r})$.

- 8. Give the relations between the shear strain components, e_{xy} , e_{yz} , e_{zx} and the components of the displacement vector, i.e. $u(\mathbf{r})$, $v(\mathbf{r})$ and $w(\mathbf{r})$.
- 9. Give a relation between the fractional increase of volume associated with a deformation, i.e. the dilation, and the normal strain components.
- 10. For a cubic crystal how many elements of the elastic stiffness matrix are unique, and which one?
- 11. Give the wave equation for a cubic crystal for a displacement in the u direction.

- 12. For a cubic crystal give the expression for the speed of a longitudinal wave in the [100] direction in terms of density and elastic stiffness constant.
- 13. For a cubic crystal give the expression for the speed of a transverse wave in the [100] direction in terms of density and elastic stiffness constant.