
Summary Chapter 1 

We learned in chapter 1 that there is order in most solid materials, i.e. the atoms are not arranged 

arbitrary, solid materials show order and consist of crystals. An ideal crystal is constructed by the infinite 

repetition of identical groups of atoms. A group is called the basis. The set of mathematical points to 

which the basis is attached is called the lattice. The lattice may be defined by three translation vectors, 

a1, a2, and a3. The arrangement of atoms looks the same from any point r’ where r’ differs from r by an 

integral multiple of the translation vectors, i.e. 

r’=r+u1a1+u2a2+u3a3 so u1, u2, and u3 are integers 

The space defined by a1, a2, and a3 is called the unit cell. The definition of unit cell is not unique. If any 

two points for which the atomic arrangement looks the same satisfies above equation with suitable 

choice of integers u1, u2, and u3 we identify the lattice as primitive. For a primitive lattice the volume of 

the unit cell, i.e. 321 aaa


  is minimum. The corresponding translation vectors are referred to as 

primitive translation vectors. Note that the primitive unit cell is not unique. Conventional unit cells are 

defined by non-primitive axes. A primitive unit cell contains one lattice point per cell. 

A special type of primitive lattice cell is the Wigner-Seitz cell. This cell is bounded by planes that 

intersect the lines between neighboring lattice points right in between both lattice pints. We will see in 

chapter 2 that the Wigner-Seitz cell is very relevant to understand diffraction effects.  

The basis is defined by one or more atoms positioned within the unit cell. The position of the atoms in 

the unit cell is defined with respect to the associated lattice point, i.e. 

 rj’=r+xja1+yja2+zja3  

where xj, yj, and zj define the position of the jth atom with the unit cell and are numbers between 0 and 

1. 

In addition to the translational symmetry discussed above, crystal lattice may have rotational symmetry. 

Some lattices have one, two, three, four or six-fold rotation axes. A crystal with a three-fold rotation axis 

for example will look the same when rotated over 2/3. Although molecules with other rotation 

symmetries do exist, a periodic infinite lattice cannot have for example a fivefold rotation axis. 

In two-dimensions the oblique lattice as depicted in figure 3 is only invariant under rotation of  and 2. 

A rectangular 2D lattice is also invariant under the mirror operation. A square 2D lattice is also invariant 

under a rotation of /2 and 3/2. The other two Bravais lattices in 2D are the hexagonal lattice and the 

centered rectangular lattice.  Note that each Bravais lattice is defined by a number of symmetry 

operations.  

In 3D the triclinic lattice is the most general lattice. There are 13 special lattices in 3D: cubic, tetragonal 

(one side different length), orthorhombic (all sides different length), monoclinic (all sides different 

length and one angle unequal to 90 degrees), trigonal (all sides equal and all angles equal but unequal to 

90 degrees), hexagonal (two sides equal and two angles 90 degrees and one angle 120 degrees). Note 



that for some of these lattice types there are different centering, i.e. body centered, face centered, 

simple cubic, or base centered.  

We looked to four different crystal structures more carefully, i.e. the simple cubic, the body centered 

cubic, the face centered cubic, and the Hexagonal closed packed crystal structures. The HCP and FCC 

structures have the largest packing fraction while the SC structure has the lowest packing fraction. 

Materials with ionic bonds often crystallize in a closed packed structure. Good examples are the metal 

oxides where the oxygen forms an FCC crystal structure. The much smaller positive ions fill the voids in 

between the large oxygen ions. For an FCC structure two types of voids exists: (1) tetrahedral voids (two 

for each atom); (2) octahedral voids (one for each atom). Tetrahedral voids have a coordination number 

of 4 while octahedral voids have a coordination number of 6. For FCC the octahedral voids are the 

largest. If all octahedral voids are filled up we will get the NaCl structure also often referred to as the 

rocksalt structure: the Cl- ions form a fcc structure and the small Na+ ions fill the octahedral voids. For 

the fcc structure the octahedral voids have a radius of 0.414 times the radius of the negative ion radius 

and the tetrahedral voids have a radius of 0.225 times the radius of the negative ion radius. For atoms 

that form covalent bonds the coordination number of the void might be more important than the size of 

the void. For example in SiC both atoms have a valence of four and want to be surrounded by 4 

neighbors. If one considers an fcc structure build up from Si atoms, half of the tetrahedral voids are 

filled up with Carbon atoms. This results in the ZnS crystal structure drawn on page 18 of the text.  

Note that in a SC crystal the atoms have a coordination number of 6. This crystal structure has a small 

packing fraction. There is only one element that crystallizes in the SC structure. The voids for the simple 

cubic structure is depicted in Fig. 2. The void is large, i.e. 0.732 times the radius of the negative ions that 

are situated at the corners of the cube. The coordination number of the central void is 8. Considering a 

SC crystal structure of chloride ions, a positive ion fits easily in the center void. Filling the void with Cs+ 

ion will result in the CsCl crystal structure shown on page 14 of Kittel.  

 

Fig. 1: (a) Octahedral voids in center of conventional unit cell of fcc structure (note that this void is solely 

owned by the conventional unit cell); (b) Octahedral void at the edge of the conventional  and only counts 

for ¼. For each line of the cube there is one octahedral void which adds up to 12/4=3 octahedral voids at the 

edge of the conventional unit; (c) tetrahedral void in conventional unit cell (there is one at each corner of 

the cube, i.e. 8 tetrahedral voids per conventional unit cell or 2 tetrahedral voids per atom. 



 

 

For a BCC crystal the coordination number for each atom is 8. One can find 3 octahedral voids and 6 

tetrahedral voids in the conventional bcc unit cell as depicted in Fig. 3 below. The octahedral voids in the 

bcc are the smallest voids, i.e. 0.155 times the radius of the negative ions. The tetrahedral voids are a 

little larger i.e. 0.29 time the radius of the negative ions that build up the bcc lattice. Note that the 

tetrahedral and octahedral voids of the bcc structure are distorted.  

 

 

The hcp and fcc crystal structure are very similar if one compares the (111) planes of the fcc structure 

with the (001) plane of the hcp structure. Both planes are close packed, i.e. each atom is surrounded by 

6 neighbors. Stacking atom layers on top of these closed packed planes allows for two different 

methods. One can stack every third layer of atoms exactly above the first layer. This will result in a 

stacking sequence ABABABAB etc. This corresponds to an hcp crystal structure. It is also possible to put 

the third layer shifted with respect to the first two layers, so now you will get a stacking ABCABCABC. 

This stacking corresponds to an fcc crystal structure. The difference between both structures is depicted 

in the figure below.  

 

Fig. 3: (a) tetrahedral void bcc structure, i.e. two for each line of the cube so 2x12/2=12; (b) octahedral 

void on each plane so 6/2=3; (c) other octahedral void, one on each line so 12/4=3. 

 

 

Fig 2: central void in center of simple cubic crystal structure. 

 



 

 

 

 The voids for an hcp crystal structure are very similar to the voids for an fcc structure. For each atom we 

expect two tetrahedral voids, i.e. one above the atom and one below the atom in the (001) direction. 

One octahedral voids can be expected per atom for the hcp crystal structure.  

 

 

 

  

Fig. 5: Octahedral voids on the left and tetrahedral void in the middle for fcc or hcp 

structures; tetrahedral and octahedral voids on far right. 

  

Fig. 4: (111) planes of fcc structure on the left and (001) planes of hcp structure in the middle; difference 

between hcp and fcc crystal structure on the right.  


