
Statistical Mechanics primer for Solid State. 

Chapter 5 start with a derivation  of the heat capacity which is based on statistical mechanics. As some 

of you have not taken statistical mechanics yet here some background. 

If you assume a set of identical harmonic oscillators in thermal equilibrium, the ratio of the number of 

oscillators in the (n+1)th quantum state to the number of oscillators in the nth quantum state is given by 

the following expression: 
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Note that for a harmonic oscillator the energy between the nth and (n+1)th state is h . The  is the 

fundamental temperature and is equal to: 

 TkB           [2] 

Where T is the temperature in Kelvin and kB is the Boltzman constant equal to 1.38E-23 m2kgs-2K-1. In the 

following text I will explain the origin of equation [1]. 

In statistical mechanics we define the fundamental temperature in terms of entropy. So let us first have 

a look at entropy. The entropy is a measure of the number of specific ways in which a thermodynamic 

system may be arranged. It is measure of disorder. For example consider a system consisting of 5 

harmonic oscillators. In chapter 4 we saw that the energy of a harmonic oscillator is given by its 

quantum number (see equation 27). If i the energy of the ith harmonic oscillator and ni is the quantum 

number of the ith harmonic oscillator then, the energy of the ith harmonic oscillator is given by: 
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The total energy of the system of five harmonic oscillators is given by: 
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Now assume that the total energy of the system is h5.4 . There are different ways that this energy can 

be divided over the five harmonic oscillators. The table below shows the different ways. 

Oscillator 1 Oscillator 2 Oscillator 3 Oscillator 4 Oscillator 5 

0.5 h  0.5 h  0.5 h  0.5 h  2.5 h  

0.5 h  0.5 h  0.5 h  2.5 h  0.5 h  

0.5 h  0.5 h  2.5 h  0.5 h  0.5 h  

0.5 h  2.5 h  0.5 h  0.5 h  0.5 h  

2.5 h  0.5 h  0.5 h  0.5 h  0.5 h  



1.5 h  1.5 h  0.5 h  0.5 h  0.5 h  

1.5 h  0.5 h  1.5 h  0.5 h  0.5 h  

1.5 h  0.5 h  0.5 h  1.5 h  0.5 h  

1.5 h  0.5 h  0.5 h  0.5 h  1.5 h  

0.5 h  1.5 h  1.5 h  0.5 h  0.5 h  

0.5 h  1.5 h  0.5 h  1.5 h  0.5 h  

0.5 h  1.5 h  0.5 h  0.5 h  1.5 h  

0.5 h  0.5 h  1.5 h  1.5 h  0.5 h  

0.5 h  0.5 h  0.5 h  1.5 h  1.5 h  

 

Each of those configurations are referred to as a microstate or a quantum state. The fundamental 

assumption of thermal physics is that a closed system is equally likely to be in any of the quantum state. 

So the probability to find the oscillator 2 in the ground state is 9/14 as nine of the microstates listed in 

the table above have 2=0.5 h . The probability to find the same oscillator in 1.5 h is proportional to 

4/14 as 4 of the 14 microstates in the table show 2=1.5 h . The number of different microstates that 

result in the 2nd oscillator to have a certain energy 2=U, is called the multiplicity of that macro-state, i.e. 

g(2=U). Note that the macro-state considered here is “oscillator 2 has and energy U”. As the multiplicity 

of a macro-state can be very large one defines a new quantity called the entropy : 

     U) g(lnU 22           [5] 

The equation indicates that both the entropy and the multiplicity are a function of the energy of 

oscillator 2. So the natural log of the multiplicity of a macro-state is the entropy. The macro-state with 

the largest entropy is normally the most likely macro-state. It is clear that it is not very likely that 

oscillator 2 has an energy of 2.5 h  as only one microstate corresponds to that. If one increases the 

total energy of above given system to 12.5 h , the number of microstates increases significantly. The 

multiplicity of the macro-state for which oscillator 2 has 10.5 h  units of energy and the other 

oscillators have each 0.5 h  is still one though. So the probability that all this extra energy goes to 

oscillator 2 is very unlikely. The most likely energy of oscillator 2, i.e. the most likely macro-state, is the 

macro-state that has the largest multiplicity, i.e. the macro-state with the largest multiplicity, i.e. largest 

entropy.  

If you bring two systems A and B in contact with each other, energy will flow from the system with the 

highest temperature (A) to the system with the lowest temperature (B). This transfer of energy is driven 

by an increase of the total entropy of the system. The total entropy of the system is the sum of the 

entropy of the separate systems. So as long as 
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a flow of energy from A 

to B will result in an increase in total entropy. A small slope means a high temperature. Therefore the 

fundamental temperature is often defined as the reciprocal value of the slope of the energy-entropy 

graph, i.e. 
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We can now explain equation [1] using multiplicities or entropy. Assume the total system to consists of S 

and a reservoir R and that both R and S are in thermal equilibrium with each other. Furthermore assume 

that the total system, i.e. R+S has an energy of Uo. We can express the ratio of the number of oscillators 

in the (n+1)th quantum state to the number of oscillators in the nth quantum state of system S in terms 

of probabilities (PS(n) is the probability that an oscillator has an energy n) or multiplicities (gs(en) is the 

multiplicity of the macro-state S has an energy n): 
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Where gS(n+1) is the multiplicity of S and gR(U0-n+1) is the multiplicity of the reservoir R when S has an 

energy 2. Note that the multiplicity of the total system, i.e. S+R, is equal to the product of the 

multiplicity of S and the multiplicity of R.  Also note that if we assume that S has only one oscillator then 

gs(n+1) and gs(n) are both 1, so [7] turns into: 
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We can write [8] in terms of entropy using equation [5]  
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We can do a Taylor approximation on , i.e. 

             ..........11 
























 

V

R
noR

V

R
noRnoRnoR

U
U

U
UUU





  [10] 

We can now use the definition of temperature, i.e. equation [6] to simplify equation [10]: 

 
 




 nn

R


 1          [11] 

Or now equation [9] can be written as: 
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As for a harmonic oscillator  hnn 1 we can write [12] as: 
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Which is equation [1]. This equation gives the ratio between the number of oscillators in the (n+1)th 

quantum state to the number of oscillators in the nth quantum state.  

Notice that we can rewrite equation [13] to: 
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The left only depends on n and is independent of n+1 and the right only depends on n+1 and is 

independent of n. Since they are both equal to each other both the left and the right are independent 

of both n and n+1 and equal to a constant. If we call this constant 1/Z we can rewrite equation [14] as: 
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This is often referred to as the most important equation of statistical mechanics. The term is the 

numerator is the Boltzmann factor for a state with energy n, and the term in the denominator is the 

partition function. Z depends on the temperature and the energy levels of the available states of the 

system. It is a measure for the number of accessible states. We can derive an expression for Z by 

realizing that the sum of all probabilities should be 1, i.e. 
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Now we can use equation [15] and [16] to find the fraction of the total number of oscillators in the nth 

quantum state, i.e. 
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Or this fraction is equal to the Boltzmann factor of the nth state divided by the partition function. And of 

course the average excitation quantum number becomes a weighted average, i.e. 
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