
Summary Chapter 5 part 2. 

 

As shown in Fig. 13, Debye’s density of state approximation which assumes a constant phonon speed is 

only valid for low w value. For 3d crystals large differences are expected towards the cut-off frequency, 

D. Kittel provides more general expressions for the density of states on pages 117-119 that can be used 

to calculate the density of states for arbitrary dispersion relations. To get appreciation for those 

expressions, let us revisit the 1D density of states calculation that we did earlier in the chapter. We focus 

here on the case with the periodic boundary conditions. K-space for a system with 8 atoms is shown in 

the figure below. You can see that the mode density in K-space is constant, i.e. for each 2/L length of K-

space there is one mode. So we have L/2 modes per unit length of K-space.  

 

In order to convert this to a density of state as a function of  we have to make assumptions about the 

dispersion relation, i.e. the relation between  and K. Debye assumed a constant phonon velocity, i.e.  

 Kv           [1] 

Note that there are two phonon modes at each frequency. One moving clockwise (positive K) and one 

moving counter clockwise (negative K) through the circular 1D system of Fig. 4.  

Now let us look at a 2D system with the same dispersion. K-space for a 2D system consisting of 8x8 unit 

cells is plotted in the figure below. The mode density seems to be again constant through K-space. For 

every (2/L)2 surface area in K-space we have basically one mode. So the mode density is (L/2)2. Note 

that there are now much more than just two modes with approximately the same frequency. All the 

phonon modes situated between the two circles have approximately the same frequency. 

 



So I expect the number of modes for large frequency or large |K|-value to be larger than the number of 

modes for small |K| value. From the figure above one can see that the number of modes between |K| 

and |K|+d|K| is expected to be proportional to the circumference of the circle, i.e. proportional to |K|. 

Note that both circles are constant  contours because of the linear relation between  and K. Since for 

our simplified dispersion relation w and K are linear proportional we expect the D() will be linear with 

 as well.  

For the 3D case we expect that there are many more phonon modes with approximately the same  

value. Constant  contours are now surfaces, i.e. spheres. The number of states between them will be 

proportional to the volume between a sphere of |K| and a sphere of |K|+d|K|. This volume will be 

proportional to the surface of a sphere, i.e. to |K|2. With our simplified dispersion relation this suggests 

that D() for the 3D case is linear proportional to 2.  

Kittel found for the density of states: 

  
dK

d

L
D D 


1

1           [2] 

 
dK

d

VK
D D 


1

2 2

2

3          [3] 

Note that d/dK is the group velocity. So the density of states depends on the phonon speed, or the 

dispersion relation, i.e. (K). Those areas of K-space that have a smaller slope will contribute stronger to 

the density of states. The figure below shows the dispersion relation for the 1D case we calculated in 

chapter 4. For higher K-vectors, the slope is smaller, so much more modes have approximately the same 

. In chapter 4 we calculated the dispersion relation for a simple 1D case, i.e. equation (7) of chapter 4. 

We could use that to find a more specific expression for D1D().  

For 2D and 3D systems the analysis will be more complicated as the constant w contours are no longer 

circles and spheres but weird shaped surfaces in K-space. To find D() we would need to determine the 

volume between the constant  contours in K-space and divide by the K-gradient of w, i.e. 

  
    




 

K

dSV
D

3
2

  

Where dS is a small segment on a constant  contour in K-space.  More details are provided on page 

117-119 in Kittel. 

 

 

 



 

 

 

  


