- 1. Describe in your own words the following terms:
 - a. Harmonic approximation
 - b. Dispersion relation
 - c. Longitudinal modes
 - d. Elastic constants
- 2. What characteristics must the crystal structure of a solid have in order for optic modes to exist? Is it possible for the phonon dispersion relations of a solid to contain acoustic modes only? If so what characteristics are required for the crystal structure.
- 3. Describe in your own words the following terms:
- a. Planck's distribution.
- b. Phonon density of states (density of modes).
- c. Einstein Frequency and Einstein Temperature
- d. Heat current
- e. Umklapp processes.
- 4. Discuss the physics underlying the Debye model. What is the primary assumption that this model makes about the behavior of the phonon frequencies as a function of the wave-vector? Briefly contrast this with the assumption made in the Einstein model.
- 5. Consider 1-d chain with identical masses M. Assume that there are nearest neighbor springs with spring constant K_1 and next-nearest neighbor springs with spring constant $K_2 < K_1$.
 - a. Find the dispersion relation for this system.
 - b. Calculate the speed of sound and compare to a system without next-nearest neighbor interactions.
- 6. Assume a system consisting of atoms of the same mass but with alternating spring constants, K and G between the atoms. The dispersion relation of such system is given in the figure below.

As you can see above there is a gap in the density of states, i.e. a frequency range for which there are <u>no stationary normal</u> model. How can one change K, G, and M to make the gap larger or smaller.

- 7. Consider and aluminum sample. The nearest separation 2R (2x atomic radius) between the Al-Al toms in the crystal is 0.286 nm. Taking a to be 2R, and given the sound velocity in Al as 5100 m s⁻¹, calculate the force constant C in Equation (1) of chapter 4. Use the group velocity vg from the actual dispersion relation, i.e. equation 7 of chapter 4, to calculate the sound velocity at a wavelengths of λ =1 mm, 1 um, and 1 nm. What do you conclude?
- 8. Aluminum has a Debye temperature of 394 K. Calculate its specific heat in the summer at 25 $^{\circ}$ C and in the winter at -10 $^{\circ}$ C. Note that the heat capacity below the Debye temperature significantly depends on the T (see also Fig. 4.43 of the handout).

Figure 4.43 Debye constant/volume molar heat capacity curve. The dependence of the molar heat capacity C_p on temperature with respect to the Debye temperature: C_p vetrus T/T_0 . For St., $T_p = 6.25$ K, so at room temperature [300 K), $T_1T_0 = 0.48$ and C_m is only 0.81 [3R].

- 9. A. Given that silicon has a Young's modulus of about 110 GPa and a density of 2.3 g cm⁻³, calculate the mean free path of phonons in Si at room temperature.
 - B. Diamond has the same crystal structure as Si but has a very large thermal conductivity about 1000 W m⁻¹ g⁻¹, Young's modulus Y of 830 GPa, and density ρ of 0.35 g cm⁻³, calculate the mean free path of phonons in diamond.

	Crystal							
	Ag	Be	Cu	Diamond	Ge	Hg	Si	w
$T_D(\mathbf{K})^*$	215	1000	315	1860	360	100	625	310
$C_m (\mathbf{J} \mathbf{K}^{-1} \mathbf{mol}^{-1})^{\dagger}$	25.6	16.46	24.5	6.48	23.38	27.68	19.74	24.45
$c_s (J K^{-1} g^{-1})^{\dagger}$	0.237	1.825	0.385	0.540	0.322	0.138	0.703	0.133
κ (W m ⁻¹ K ⁻¹) [†]	429	183	385	1000	60	8.65	148	173

* T_D is obtained by fitting the Debye curve to the experimental molar heat capacity data at the point $C_m = \frac{1}{2}$ (3R). $^{\dagger}C_m$, $_{C_0}$, and $_{K}$ are at 25 °C. SOURCE: T_0 data from J. De Launay, Solid State Physics, vol. 2, F. Seitz and D. Turnbull, eds., Academic Press, New York, 1956.

- 10. Consider a one-dimensional crystal with three atoms in the basis. You may assume the force constant between all atoms is the same.
- a) How many phonon branches do you expect. Give a qualitative justification for your answer.
- b) Support your answer to part a) mathematically. Note that you do not need to find dispersion relations. You only need to develop your mathematical model to a point where it supports your answer to part a).