These questions were constructed by the students that took Solid State Physics, i.e. PHYS5320, in spring
2015. Special thanks to Parisa Jalili, Roberto Lopez, Vicente Estrada Carpeter, Eric Welch, Fidel
Twagirayezu, Ahad Talukder, Rony Saha, Jung-Yong Lee, Elizabeth Leblanc, and Yubo Cui.

1. Explain the phenomenon heat capacity in terms of elastic waves in a crystal. Address also on how heat is

transported in solid materials. Use in your answer the following terminology: Einstein model, Debye
model, heat capacity, phonons.

As we can see photons as an interaction of electromagnetic field, we can see phonons as a collection of
particles which propagate through crystals. In order to explain the heat capacity of a solid, Einstein thought
that each atom in a crystal acts like an harmonic oscillator independently. His theory was well consistent with
experimental results at high temperature, but it was not at low temperature. On the contrary, Debye thought
that atoms in a crystal were affected by other atoms' motion, and he succeeded in explaining the heat capacity
of a solid. To be specific, the vibration of atoms which is generated in a center of a certain lattice point in a
crystal is an interaction of atoms, therefore vibration cannot stay at one atom, but it propagates as waves in a
crystal. This is a sound wave in a crystal. As a result, we have to follow the rule of quantum mechanics to
explain the motion of an atom exactly. And if we quantize the sound wave, it represents the features of
particles. A phonon is a sound wave which has features of particles.
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3. A 1-dline of atoms with length L=4, has periodic boundary conditions such that the atom at n=0 is
identical to the atom at n=4. Notice that this system contains 4 different atoms.

a. Draw the lattice in real space, label each atom with its numerical position.

b. How many phonon modes does this system has. Draw them and label them with the appropriate k-
vector.

c. We derived in class the dispersion relation for such system (see page 92 in Kittel) it is plotted in Fig. 4.
For very large N-case. Note that this plot is actually a series of delta functions. Draw the dispersion
relation for this particular case.

d. Draw the density of states function for this system.

e. Write down an expression for internal energy of this system. It is not necessary to convert the
summation in an integral as the number of states is so low.

Note that we could use the U to calculate Cy by taking the derivative towards T. We won’t do that here
as it will only show our Calculus talents.



Key: a. | draw them in a circle as we are considering periodic boundary conditions.
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b. The modes are given below. | call K=0 the heart beat mode, K=mt/a the CW traveling wave, K=-rt/a the
CCW traveling wave, and K=2m/a the “squeezy” standing wave if that were a word. Note that K=-271/a
will result in exactly the same type of standing wave as K=27/a, so they are similar modes.
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c. We have only four modes so there are four different non-zero values in our graph. See graph below.
Notice that even figure 4 of chapter 4 is not a continuous function but consists of a series of points

separated by 2m/L.

The dashed line is a guide to the eye and is described by the root of equation 7 of chapter 4, i.e.
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d. Using above dispersion equation we can calculate the w for the allowed K-values of the different
modes:
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Note that both the positive and negative K values have the same frequency.
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e. Since this is a 1D problem we have only 1 mode, i.e. the longitudinal mode, at least if we assume that
we live a 1D and there is only 1 direction in space.
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Note that real 1D system do not exists, even a straight polymer is situated in our 3D world. So in
addition to the longitudinal mode, atoms can also vibrate perpendicular to the axis of the molecule. A
lot of the polymers are not straight but have some type of “zig-zag” which means that the elastic
compliance constants in the x and y-directions (perpendicular to the polymer axis) might be different,
resulting in two transverse modes and one longitudinal mode.

4. Consider a linear chain in which alternate ions have mass M; and M,, and only nearest neighbors
interact.

a. Set up the system of difference equations for such system and determine the characteristic equation.

b. Assume that the dispersion relation and the nature of the normal model is given by the following
equation:

o = MCM (M1+I\/I2 + JM? + M +2M1Mzcos(Ka))
1 2

Discuss the form of the dispersion relation and the nature of the normal modes when M;>>M, (i.e.
calculate and draw the normal modes).



c. Compare the dispersion relation with that of the monatomic linear chain when M, is approximately
equal to M,.

Key problem 4: a. is worked out in Kittel on pages 97 and 98. The characteristic equation is given by
equation (22). b. Using the abc equation we can rewrite (22) so it looks the same as the equation

2
provided above. @’ _C 1+&1L 1+— M, > +2M—cos(Ka)
M, 1 M; M,

For the optical branch, i.e. the plus sign, and the assumption that M;>>M, we find that the dispersion
relation will be:

Note that this is consistent with equation (23) in Kittel as for M1>>M2 the sum of the reciprocal masses
equals the reciprocal mass of the lighter atom, i.e. (1/M1+1/M2) is approximately 1/M2.

For the acoustic branch near small K value | have to include the K-dependence in the square root. | can
do a Taylor approximation for the square root: v/1+ X = 1+E X . | believe that it is still ok to ignore the

M2/M1 terms as they are offsets that shift the whole dispersion curve of the acoustic branch.

2 2
a)2=i 1eMey g Me +2M—cos(Ka) ~ & 1+&—1—1M—2—M—cos(Ka)
M, M, I\/Il N M, M, 2M; 1

Note that the cosine will vary slowly for small K so a series will give a K* term, i.e.

M2 Ml 1 1 IVll Ml
_ C Mz_M2+E M, (Ka)z C1 K232
M,(M, M, 2\M, 2 M,

Which is similar to equation (24) in Kittel. Note that both do not tell us a lot about the motion. In order
to learn more about the motion we need to plug the w values into the difference equations. First for the

2
@* _c 1+&i\/l+ m +2M_cos(Ka) ~ I\;: (1+ M, -1- M, cos(Ka)J
2

optical branch, i.e. using

2C
w=_|—
MZ

Plugging into difference equations gives (equation (24) in Kittel):



_If/l_c M,u, = Cv, [1+ e’“‘a]— 2Cu,

2

2

We can write those equations as a matrix to find u, and v,:

2CM,

v Cli+e™) [uj .

cle®a+1) —2c+ZMi v,

-2C+

2

For u, over v, | find now:

So for the optical branch the amplitude of vibration of the mass 1, i.e u, is much larger than the
amplitude of vibration of mass 2. In other words the vibration amplitude of the lightest atom is the
largest.

For the acoustic branch, we have the following dispersion relation (note K dependence):

W= Ka

2M,

So we find for the difference equations (plugging in equation (20) of Kittel:

_c K?a*M,u, :Cvo[lJre“"f"]—ZCuO
2M,

~ & K?a?m,y, = cu,fe*e +1]-2cv,
2M,

Assuming that K is very small, the left sides will go to zero while the exponential term becomes 1. So
then we find for the ratio of uo and vo 1, so they both have the same amplitude.

Note that for values away from the center of the Brillouin zone the ratio of u0 and vo in general is
complex. This means that both atoms oscillate out of phase. In general the phase difference is
somewhere between 0 and .

c. When M1=M2 the dispersion relation is similar to that of a mono-atomic linear chain, at least it
should be. Let see, for a monatomic linear chain we would only have one branch. Let us plug in
M1=M2=M into the given dispersion relation:



° :L(M +M i\/M2+M2+2Mzcos(Ka)): ¢ (2i,/2+ZCosiKai)

MM M
_C 2+ [2+4cos? Ka -2 _C 2+2c0os Ka
M 2 M 2

Which is indeed the normal dispersion relation for a mono-atomic linear branch. So there is only one

branch, which makes sense.

For those of you who have time left, you might want to consider to repeat problem (b) but now not for
the center of the Brillouin zone but near the edges of the Brillouin zone, so assume k=n/a and determine
o from the dispersion equation provided under question b. Then use this ® to calculate the u, and the v,
from equation (20) in Kittel. Note that you have two different ws, one for the optical branch and one for
the acoustical branch. For the optical branch you will find that only v is time dependent and u is actually
independent of the time. For the acoustical branch you will find the opposite.

5a. Find N, the total number of phonon modes in 4D. Assume that the volume of a sphere in 4D is equal
to:

1
V ==7%r*
2
b. Determine the density of states in 4D. Assume that the speed of elastic waves is constant and given
by the following dispersion relation: @ =VK
c. Determine the total thermal energy in 4D.
d. Find the heat capacity of the lattice in 4D.

Key Problem 5:

a. For periodic boundary conditions | expect the following traveling waves to be eigenfunctions of
the 4D system. The wave-vector has now four components and | expect the following modes in
a material that is LxLxLxL:

Ky Ky, Ky, K, =0, +/-27t/L, +/-A7/L, +/-67/L, .......

So states are separated by 27t/L in all four directions resulting in one state per 4d-volume of
(21t/L)*. Or the density of states in k-space is (L/21)* per 4d-volume unit. So the total number of
states with a K-vector smaller than K, is equal to the volume of the 4d-sphere times the density
in K-space, i.e.

4
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b. Ican find the density of states by taking the derivative towards o, i.e.

4
(o) MWK _(L]'L ik
ow oK ow 2r) 2 ow

Now | use the provided dispersion relation:

V, @°
D — 4D
(a)) 872V

Where V4 is the four dimensional volume and v is the speed of sound.

c. lcanfind the total thermal energy by assuming that | can still use Planck’s distribution function
in4D, i.e.

60
Y= Z-[ j:v e“’”” ) 1dw

Now substitute Ao /(k,T)=ho!/r < o =% and dw = %dx

U =4 Vao TT3X3 ’x 1 dx—4V4DkgTST x* dx~25kgT5
87z2v R° h e*-1 8r’v'h*ye* -1 8r’v'h’

Note that we assumed four different polarizations, i.e. one longitudinal and 3 transverse
polarizations.

| find the heat capacity by taking the derivative of the internal energy towards T, i.e.

_oU _125vkgT*
VooT  8xivih?
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7. Derive an expression for the specific heat of a one-dimensional diatomic lattice. Make the Debye
approximation for the acoustic branch and assume that the optical branch is flat. Investigate the high
and low temperature limits. Assume that the speed of the elastic waves is constant and equal to v.

Solution: The density of states in 1D is given by:
-1
L ow L
Dw)-=[22] -t
7\ oK w
In the Debye approximation the number of allowed modes in the acoustic branch is:

TD(a})da) =N

0

So we get for mp:

So we find now for the heat capacity at constant volume:

du

acoustic __
“ T

After differentiation, change to the dimensionless variable X = ha)/(kBT) and by defining the Debye

temperature 6, as K6, =haw, we get:
0o 1T
_RT ™ x%e

O % (ex—l)2

At low temperature, T<<qgD, so the upper limit of the integral approaches infinity and we get

dx

C acoustic
V

2
C acoustic __ R l”_

9 =
0, 3
Or the heat capacity is linear proportional to T. Note that at low temperature | do not expect that optical
phonon modes are occupied.

At high temperatures however these optical phonons need to be included in the model. Note that since
we assume that the optical branch is flat | can use the Einstein model for the optical branch heat
capacity (only one oscillator). So we get:



6 /T ,2.x 2 heo!(keT)
_ _ h 8
C\t/ot — C\?coustlc_{_c\(/)ptlcal — RT J‘ Xe 3 dX+ R( a)E ] € :
0y 3 (ex _1) ko T (eha)/(kBT) _1)

Where we use a similar approach as Kittel did on pages 114-117. For T>>0; and kgT>>hm: we get:

C\t/otal — 2 R

8. For the 1D lattice shown below find the characteristic equation assuming that the force constant
between atoms 1 and 2 is C, between atoms 2 and 3 is 2C and between atoms 3 and 1 is 2C.
Furthermore consider only nearest neighbor interaction. The masses of the atoms are as follows: M=M,
M,=M;=2M.

A
Y

a/3 a/3 a/3

ONONONONONONONONO,

Key Problem 8: | first determine the difference equations following the description above. | name the
displacement of atoms 1, u, the displacement of atoms 2, v, and the displacement of atom 3, x:

62
M a::JzSt = C[Vs,t _us,t]+ ZC[XS—I,t _us,t]
2
2M 86:;“ = ZC[XS,I _Vs,t]+C[uS,t _stt]
o°x

Now | use appropriate trial solutions for this set of difference equations to get rid of the time
dependence. Mathematically this is the same as separation of variables (assume that u,=uf(t)). For trial
solutions | choose:

_ —iawt 4isKa

U, =u.e e
_ —iawt 4isKa

Vo =V,e e
—iat 4isKa

X, = X,e7'"e

Plugging in gives:



~Mw?u, =C[v, —u, ]+ 2C[x,e ™ —u, |

—2Maw?v, = 2C[x, -V, ]+Clu, -V, ]

—2Ma’x, = 2C[u,e"* —x, |+ 2C[v, —x, ]
Reworking:

0=Maw?’u, —3Cu, +Cv, +2Cx e

0=Cu, +2Ma*v, —3Cv, +2CX,

0 =2Cu,e"® +2Cv, + 2Mw’x, —4Cx,

Or in matrix form:

Ma* —3C C 2Ce™*  [u,
C 2Mw* -3C 2C v, |=0
2Ce™® 2C 2Maw* —4C | X,

For non-trivial solutions this determinant needs to be zero so:

Mw? —3C C 2Ce @
C 2Mw? —3C 2C =0
2Ce™ @ 2C 2Mw?® —4C
Which gives:

0=(Ma? -3C)2Ma? -3C [2Ma, —4C)-(4C°Mao? ~12¢*)- (2C*Ma® —4C? )+ 4C%** +
4C% ™ —(8C°Ma® ~12C%)
0=(Ma? -3C)2Ma? - 3C [2Ma, — 4C) - (14C°Ma? — 28¢° )+ 8C* cos(Ka)

Note that this polynomial has six solutions so | expect three different branches for each displacement
direction. So if | only allow motions of the molecules parallel to the chain | will find 3 different
longitudinal branches. If | also allow motions perpendicular to the chain | could get up to 6 additional
modes, for two different transverse directions. Some of those modes might have the same dispersion
relation depending on the geometry. The spring constants for motions parallel to the chain and
perpendicular to chain are in generally not the same. Check the end of chapter 3: shear elastic stiffness
constants are different from the normal elastic stiffness constants even for a cubic material.

9. We know that atoms in a solid are vibrating from their equilibrium positions at all temperature above
zero. If we consider such oscillators to be harmonic, their energy is quantized and given by the following

expression:



E,= (n +1jha)
2

So the material can only absorb energy packages equal to k. We say that for a certain phonon mode,
i.e. read a certain m, the material contains n phonons. The number of phonons will have a major impact
on the conduction of materials, since phonons act as scatter-centre for conduction electrons. As the
number of phonons increases with temperature, the electrical resistivity increase with temperature.
Consider a single diatomic crystal of CsCl (M¢=132.905451 amu, M¢=35.446 amu, so M¢>M).

a. For which frequency range do stationary phonon states not exist in the crystal.
For which wave-vectors do the lattice vibrations have a much longer wavelength than the lattice
constant?

c. Assume that you can describe the CsCl by a 1D diatomic lattice. Use the dispersion relation to
determine the speed of sound. Use the results of Kittel on page 98 or start from the following
dispersion relation:

w2=CMCI+MCs 1i\/1—4 MCIMCS Sinz(@)
Cs'"'Cl MCI+MC5 2

Where C is the spring constant.

Key: a. | do not expect stationary states with frequencies between (2C/M;)%” and (2C/M,)%>. See also the
dispersion graph on page 96 of Kittel. So elastic waves with those frequencies can still exist in the
material but they will not be stationary states. This means that if | create an elastic wave in the material
with a frequency in that particular range by for example an actuator on top of the material, if | stop the
actuator the elastic wave will reduce in amplitude in time and its energy will go to other phonon modes.
After a while the forced elastic wave is no longer there.

b. K is inversely proportional to the wavelength, so small K-vector means long waves. The smallest K-
vector of course is the K-vector for which one wavelength fits in the material (for standing wave case,
i.e. fixed atoms on both surfaces of the material) or the situation where all atoms move in phase and
K=0 (for traveling wave with periodic boundary conditions; to be honest this is not really a traveling
wave as you move your whole block of material back and forward). In all case however small K means
long wavelength.
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10. You have a monatomic cubic lattice of lattice spacing a, and sound velocity v. Say you want to do a
lattice heat-capacity experiment in the fully guantum mechanical regime (i.e. most of the acoustic
modes have “frozen out”). Your apparatus is capable of reaching a temperature, 4 K. How small does
your sample have to be? Give the answer in unitcells.

[Hint: For a finite sample, the allowed wavevectors are discrete. You are looking for the smallest, non-
zero wavevector, as this will give you the lowest energy excitation of the crystal. Relate this energy to
the thermal energy to solve the problem.]

Key: At extremely low temperature where even acoustic modes have frozen out, the discretized nature
of energy levels becomes important due to different phonon modes, i.e. the possible values of the K
vector. For a crystal of length L, the phonon modes with the following wave-vectors are allowed:



Since K = 2rtn/L, where n =0,1,2,3,....ccceuneen.

The smaller the wave-vector of a phonon mode the smaller the energy of the phonon in that mode and
the smaller the energy difference between the first excited state and the ground state. So we need to
look to the energy of phonons with the longest wavelength and compare that to kT. The wave-vector of
the first excited phonon mode K = 21t/L. To observe physics in this regime, the thermal energy kgT should
be comparable with the energy difference between ground state and first excited state,

hw = hvk = hv27t/A
i.e., kT < hv2mt/A=-hv271/L

L < hv2r/(kgT)

which gives: L/a < 2mthv/(kgTa) so the size of the sample should be about (2rthv/(ksTa)) atoms, with v the
speed of sound.

Notel that at very small dimensions the lattice parameter might be significantly different from the bulk
lattice parameters. This will change the coupling between the atoms and thus the speed of the elastic
wave. In the next chapter we will see that the size of the system will also change electron density
through our material. For small particles this electron density can significantly differ from the bulk
electron density distribution. The electron density distribution will influence the elastic properties.

Note2: the speed of sound in copper is 4600 m/s and the lattice parameter of copper is 3.6A, so plugging
in the numbers gives: 145 lattice spacings, i.e. 52 nm. Of course at higher temperatures, phonon related
finite size effects are only showing up for much smaller systems.



