
These questions were constructed by the students that took Solid State Physics, i.e. PHYS5320, in spring 

2015. Special thanks to Parisa Jalili, Roberto Lopez, Vicente Estrada Carpeter, Eric Welch, Fidel 

Twagirayezu, Ahad Talukder, Rony Saha, Jung-Yong Lee, Elizabeth Leblanc, and Yubo Cui. 

1. Explain the phenomenon heat capacity in terms of elastic waves in a crystal. Address also on how heat is 

transported in solid materials. Use in your answer the following terminology: Einstein model, Debye 

model, heat capacity, phonons.  

 

As we can see photons as an interaction of electromagnetic field, we can see phonons as a collection of 

particles which propagate through crystals. In order to explain the heat capacity of a solid, Einstein thought 

that each atom in a crystal acts like an harmonic oscillator independently. His theory was well consistent with 

experimental results at high temperature, but it was not at low temperature. On the contrary, Debye thought 

that atoms in a crystal were affected by other atoms' motion, and he succeeded in explaining the heat capacity 

of a solid. To be specific, the vibration of atoms which is generated in a center of a certain lattice point in a 

crystal is an interaction of atoms, therefore vibration cannot stay at one atom, but it propagates as waves in a 

crystal. This is a sound wave in a crystal. As a result, we have to follow the rule of quantum mechanics to 

explain the motion of an atom exactly. And if we quantize the sound wave, it represents the features of 

particles. A phonon is a sound wave which has features of particles. 

 
2. 

 



 

 



 

 

3.  A 1-d line of atoms with length L=4, has periodic boundary conditions such that the atom at n=0 is 

identical to the atom at n=4. Notice that this system contains 4 different atoms.  

a. Draw the lattice in real space, label each atom with its numerical position. 

b. How many phonon modes does this system has. Draw them and label them with the appropriate k-

vector.  

c. We derived in class the dispersion relation for such system (see page 92 in Kittel) it is plotted in Fig. 4. 

For very large N-case. Note that this plot is actually a series of delta functions. Draw the dispersion 

relation for this particular case.  

d. Draw the density of states function for this system.  

e. Write down an expression for internal energy of this system. It is not necessary to convert the 

summation in an integral as the number of states is so low.  

Note that we could use the U to calculate CV by taking the derivative towards T. We won’t do that here 

as it will only show our Calculus talents.  



Key: a. I draw them in a circle as we are considering periodic boundary conditions.  

 

b. The modes are given below. I call K=0 the heart beat mode, K=/a the CW traveling wave, K=-/a the 

CCW traveling wave, and K=2/a the “squeezy” standing wave if that were a word. Note that K=-2/a 

will result in exactly the same type of standing wave as K=2/a, so they are similar modes.  

 

c. We have only four modes so there are four different non-zero values in our graph. See graph below. 

Notice that even figure 4 of chapter 4 is not a continuous function but consists of a series of points 

separated by 2/L.  

The dashed line is a guide to the eye and is described by the root of equation 7 of chapter 4, i.e. 
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d. Using above dispersion equation we can calculate the w for the allowed K-values of the different 

modes:  

 
M

C

M

C 4
 ,

4

2

1
  ,0  

Note that both the positive and negative K values have the same frequency.  

 

e. Since this is a 1D problem we have only 1 mode, i.e. the longitudinal mode, at least if we assume that 

we live a 1D and there is only 1 direction in space.  
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Note that real 1D system do not exists, even a straight polymer is situated in our 3D world. So in 

addition to the longitudinal mode, atoms can also vibrate perpendicular to the axis of the molecule. A 

lot of the polymers are not straight but have some type of “zig-zag” which means that the elastic 

compliance constants in the x and y-directions (perpendicular to the polymer axis) might be different, 

resulting in two transverse modes and one longitudinal mode. 

4. Consider a linear chain in which alternate ions have mass M1 and M2, and only nearest neighbors 

interact. 

a. Set up the system of difference equations for such system and determine the characteristic equation.  

b. Assume that the dispersion relation and the nature of the normal model is given by the following 

equation: 
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Discuss the form of the dispersion relation and the nature of the normal modes when M1>>M2 (i.e. 

calculate and draw the normal modes). 



c. Compare the dispersion relation with that of the monatomic linear chain when M1 is approximately 

equal to M2. 

Key problem 4: a. is worked out in Kittel on pages 97 and 98. The characteristic equation is given by 

equation (22). b. Using the abc equation we can rewrite (22) so it looks the same as the equation 

provided above.  
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For the optical branch, i.e. the plus sign, and the assumption that M1>>M2 we find that the dispersion 

relation will be: 
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Note that this is consistent with equation (23) in Kittel as for M1>>M2 the sum of the reciprocal masses 

equals the reciprocal mass of the lighter atom, i.e. (1/M1+1/M2) is approximately 1/M2. 

For the acoustic branch near small K value I have to include the K-dependence in the square root. I can 

do a Taylor approximation for the square root: xx
2

1
11  . I believe that it is still ok to ignore the 

M2/M1 terms as they are offsets that shift the whole dispersion curve of the acoustic branch.  
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Note that the cosine will vary slowly for small K so a series will give a K2 term, i.e. 
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Which is similar to equation (24) in Kittel. Note that both do not tell us a lot about the motion. In order 

to learn more about the motion we need to plug the w values into the difference equations. First for the 

optical branch, i.e. using 
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Plugging into difference equations gives (equation (24) in Kittel): 
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We can write those equations as a matrix to find uo and vo: 
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For uo over vo I find now: 
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So for the optical branch the amplitude of vibration of the mass 1, i.e u, is much larger than the 

amplitude of vibration of mass 2. In other words the vibration amplitude of the lightest atom is the 

largest.  

For the acoustic branch, we have the following dispersion relation (note K dependence): 
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So we find for the difference equations (plugging in equation (20) of Kittel: 
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Assuming that K is very small, the left sides will go to zero while the exponential term becomes 1. So 

then we find for the ratio of uo and vo 1, so they both have the same amplitude.  

Note that for values away from the center of the Brillouin zone the ratio of u0 and vo in general is 

complex. This means that both atoms oscillate out of phase. In general the phase difference is 

somewhere between 0 and .  

c. When M1=M2 the dispersion relation is similar to that of a mono-atomic linear chain, at least it 

should be. Let see, for a monatomic linear chain we would only have one branch. Let us plug in 

M1=M2=M into the given dispersion relation: 
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Which is indeed the normal dispersion relation for a mono-atomic linear branch. So there is only one 

branch, which makes sense.  

For those of you who have time left, you might want to consider to repeat problem (b) but now not for 

the center of the Brillouin zone but near the edges of the Brillouin zone, so assume k=/a and determine 

 from the dispersion equation provided under question b. Then use this  to calculate the uo and the vo 

from equation (20) in Kittel. Note that you have two different s, one for the optical branch and one for 

the acoustical branch.  For the optical branch you will find that only v is time dependent and u is actually 

independent of the time. For the acoustical branch you will find the opposite.  

5a. Find N, the total number of phonon modes in 4D. Assume that the volume of a sphere in 4D is equal 

to: 
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b. Determine the density of states in 4D. Assume that the speed of elastic waves is constant and given 

by the following dispersion relation: vK  

c. Determine the total thermal energy in 4D.  

d. Find the heat capacity of the lattice in 4D. 

Key Problem 5: 

a. For periodic boundary conditions I expect the following traveling waves to be eigenfunctions of 

the 4D system. The wave-vector has now four components and I expect the following modes in 

a material that is LxLxLxL: 

Kx, Ky, Kz, K = 0, +/-2/L, +/-4/L, +/-6/L, …….   

So states are separated by 2/L in all four directions resulting in one state per 4d-volume of 

(2/L)4. Or the density of states in k-space is (L/2)4 per 4d-volume unit. So the total number of 

states with a K-vector smaller than Km is equal to the volume of the 4d-sphere times the density 

in K-space, i.e. 
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b. I can find the density of states by taking the derivative towards , i.e.  
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Now I use the provided dispersion relation: 
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Where V4D is the four dimensional volume and v is the speed of sound.  

c. I can find the total thermal energy by assuming that I can still use Planck’s distribution function 

in 4D, i.e.  
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Note that we assumed four different polarizations, i.e. one longitudinal and 3 transverse 

polarizations.  

d. I find the heat capacity by taking the derivative of the internal energy towards T, i.e. 
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7. Derive an expression for the specific heat of a one-dimensional diatomic lattice. Make the Debye 

approximation for the acoustic branch and assume that the optical branch is flat. Investigate the high 

and low temperature limits. Assume that the speed of the elastic waves is constant and equal to v.  

Solution: The density of states in 1D is given by:  
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In the Debye approximation the number of allowed modes in the acoustic branch is:  
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So we find now for the heat capacity at constant volume: 

 
dT

dU
C acoustic

V   

After differentiation, change to the dimensionless variable  Tkhx B/  and by defining the Debye 

temperature D as DDB hk    we get: 
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At low temperature, T<<qD, so the upper limit of the integral approaches infinity and we get 

 
3

2

D

acoustic

V

T
RC   

Or the heat capacity is linear proportional to T. Note that at low temperature I do not expect that optical 

phonon modes are occupied.  

At high temperatures however these optical phonons need to be included in the model. Note that since 

we assume that the optical branch is flat I can use the Einstein model for the optical branch heat 

capacity (only one oscillator). So we get: 
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Where we use a similar approach as Kittel did on pages 114-117. For T>>D and kBT>>hE we get:  
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V 2  

 

8. For the 1D lattice shown below find the characteristic equation assuming that the force constant 

between atoms 1 and 2 is C, between atoms 2 and 3 is 2C and between atoms 3 and 1 is 2C. 

Furthermore consider only nearest neighbor interaction. The masses of the atoms are as follows: M1=M, 

M2=M3=2M.  

 

 

Key Problem 8: I first determine the difference equations following the description above. I name the 

displacement of atoms 1, u, the displacement of atoms 2, v, and the displacement of atom 3, x: 
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Now I use appropriate trial solutions for this set of difference equations to get rid of the time 

dependence. Mathematically this is the same as separation of variables (assume that us,t=usf(t)). For trial 

solutions I choose:  
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Plugging in gives:  
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Reworking:   
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Or in matrix form: 
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For non-trivial solutions this determinant needs to be zero so:  
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Which gives:
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Note that this polynomial has six solutions so I expect three different branches for each displacement 

direction. So if I only allow motions of the molecules parallel to the chain I will find 3 different 

longitudinal branches. If I also allow motions perpendicular to the chain I could get up to 6 additional 

modes, for two different transverse directions. Some of those modes might have the same dispersion 

relation depending on the geometry. The spring constants for motions parallel to the chain and 

perpendicular to chain are in generally not the same. Check the end of chapter 3: shear elastic stiffness 

constants are different from the normal elastic stiffness constants even for a cubic material.  

9. We know that atoms in a solid are vibrating from their equilibrium positions at all temperature above 

zero. If we consider such oscillators to be harmonic, their energy is quantized and given by the following 

expression:  
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So the material can only absorb energy packages equal to h. We say that for a certain phonon mode, 

i.e. read a certain , the material contains n phonons. The number of phonons will have a major impact 

on the conduction of materials, since phonons act as scatter-centre for conduction electrons. As the 

number of phonons increases with temperature, the electrical resistivity increase with temperature. 

Consider a single diatomic crystal of CsCl (MCs=132.905451 amu, MCl=35.446 amu, so MCs>MCl). 

a. For which frequency range do stationary phonon states not exist in the crystal.  

b. For which wave-vectors do the lattice vibrations have a much longer wavelength than the lattice 

constant?  

c. Assume that you can describe the CsCl by a 1D diatomic lattice. Use the dispersion relation to 

determine the speed of sound. Use the results of Kittel on page 98 or start from the following 

dispersion relation: 
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Where C is the spring constant. 

Key: a. I do not expect stationary states with frequencies between (2C/M1)
0.5 and (2C/M2)

0.5. See also the 

dispersion graph on page 96 of Kittel. So elastic waves with those frequencies can still exist in the 

material but they will not be stationary states. This means that if I create an elastic wave in the material 

with a frequency in that particular range by for example an actuator on top of the material, if I stop the 

actuator the elastic wave will reduce in amplitude in time and its energy will go to other phonon modes. 

After a while the forced elastic wave is no longer there.  

b. K is inversely proportional to the wavelength, so small K-vector means long waves. The smallest K-

vector of course is the K-vector for which one wavelength fits in the material (for standing wave case, 

i.e. fixed atoms on both surfaces of the material) or the situation where all atoms move in phase and 

K=0 (for traveling wave with periodic boundary conditions; to be honest this is not really a traveling 

wave as you move your whole block of material back and forward). In all case however small K means 

long wavelength.   



 



 

 

10. You have a monatomic cubic lattice of lattice spacing a, and sound velocity v. Say you want to do a 

lattice heat-capacity experiment in the fully quantum mechanical regime (i.e. most of the acoustic 

modes have ”frozen out”). Your apparatus is capable of reaching a temperature, 4 K. How small does 

your sample have to be? Give the answer in unitcells. 

 [Hint: For a finite sample, the allowed wavevectors are discrete. You are looking for the smallest, non-

zero wavevector, as this will give you the lowest energy excitation of the crystal. Relate this energy to 

the thermal energy to solve the problem.] 

Key: At extremely low temperature where even acoustic modes have frozen out, the discretized nature 

of energy levels becomes important due to different phonon modes, i.e. the possible values of the K 

vector. For a crystal of length L, the phonon modes with the following wave-vectors are allowed: 



 Since K = 2πn/L, where n = 0,1,2,3,……………, 

The smaller the wave-vector of a phonon mode the smaller the energy of the phonon in that mode and 

the smaller the energy difference between the first excited state and the ground state. So we need to 

look to the energy of phonons with the longest wavelength and compare that to kBT. The wave-vector of 

the first excited phonon mode K = 2π/L. To observe physics in this regime, the thermal energy kBT should 

be comparable with the energy difference between ground state and first excited state, 

 hω = hvk =  hv2  

 i.e., kBT < hv2 hv2L 

 L < hv2π/(kBT) 

 which gives: L/a < 2πhv/(kBTa) so the size of the sample should be about (2πhv/(kBTa)) atoms, with v the 

speed of sound.  

Note1 that at very small dimensions the lattice parameter might be significantly different from the bulk 

lattice parameters. This will change the coupling between the atoms and thus the speed of the elastic 

wave. In the next chapter we will see that the size of the system will also change electron density 

through our material. For small particles this electron density can significantly differ from the bulk 

electron density distribution. The electron density distribution will influence the elastic properties.  

Note2: the speed of sound in copper is 4600 m/s and the lattice parameter of copper is 3.6A, so plugging 

in the numbers gives: 145 lattice spacings, i.e. 52 nm. Of course at higher temperatures, phonon related 

finite size effects are only showing up for much smaller systems.  

 

 

 


