Question 1. Separation of variables- Cartesian 2D
A square rectangular pipe (sides of length a) runs parallel to the z -axis (from $-\infty$ to $+\infty$) The 4 sides are maintained with boundary conditions given in the figure. (Each of the 4 sides is insulated from the others at the corners) Note that the left side of the square is the side for which $x=0$ and the bottom side of the square is defined by $\mathrm{y}=0$. All sides are insulated from each
 other.
i) Find the potential $\mathrm{V}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ at all points in this pipe. Note that the boundary condition of the left plane requires you to take the derivative of the electric potential, i.e.

$$
\left.\frac{\partial V(x, y)}{\partial x}\right|_{x=0}=\left.Y(y) \frac{\partial X(x)}{\partial x}\right|_{x=0}
$$

ii) Sketch the E-field lines and equipotential contours inside the pipe. (Also, state in words what the boundary condition on the left wall means - what does it tell you? Is the left wall a conductor?)
iii) Find the charge density $\sigma(x, y=0, z)$ everywhere on the bottom conducting wall $(y=0)$. Use one of the boundary conditions of chapter 2, i.e. pp 89 and 90 . Notice that E in the bottom conducting wall should be zero.

Question 2. Separation of variables- Cartesian 2D

To be able to work this problem you might first need to study example 3.5 on pages 138-140. You have a cubical box (sides all of length a) made of 6 metal plates which are insulated from each other.
The left wall is located at $x=-a / 2$,the right wall is at $x=+a / 2$.
Both left and right walls are held at constant potential $\mathrm{V}=\mathrm{V}_{0}$.
All four other walls are grounded.
(Note that I've set up the geometry so the cube runs from $\mathrm{y}=0$ to $y=a$, and from $z=0$ to $z=a$, but from $x=-a / 2$ to $x=+a / 2$ This should actually make the math work out a little easier!)

Find the potential $\mathrm{V}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ everywhere inside the box.
(Also, is $\mathrm{V}=0$ at the center of this cube? Is $\mathrm{E}=0$ there? Why, or why
 not?)

