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Finite Element Method: Variational Method 

assuming a piece-wise linear function. 

Introduction 

COMSOL Multiphysics is a finite element package that can be used to solve a partial 

differential equation such as Poisson’s equation.  As discussed in lecture, Poisson’s equation is: 

 ∇2 = ∇⃑⃑ ∙ ∇⃑⃑  = 𝑓(𝑟 )       [1] 

where (𝑟 ) is some scalar field and 𝑓(𝑟 ) is the density of field sources that depends on the position 

vector 𝑟 . Poisson’s equation is a linear, second order, partial differential equation that can be solved 

for some geometries by analytical techniques. In your EMT and Classical Mechanics courses, you 

may have already studied solutions of Poisson’s equation for various geometries that have a high 

degree of symmetry (i.e. spherical, cylindrical etc.). COMSOL’s execution of the Finite Element 

Method allows it to solve more complex problems, efficiently and quickly. Note that the differential 

equation relates the 2nd derivative of the scalar field  to the source field f. For our discussion, the 

scalar field is the potential at any point in space, and the source field is the distribution of the charge 

density on whatever surface or volume we are considering.  In Cartesian coordinates the one-

dimensional Poisson equation becomes: 

       [2] 

Note that the special case where f(x) is equal to zero turns equation (2) into Laplace’s equation: 
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The two most frequently used numerical methods to solve Poisson’s and Laplace’s equations are: 

1. The finite difference method 

2. The finite element method 

Comsol Multiphysics, uses the finite element method. 

 

Minimum Energy Principles in Electrostatics 

Jackson shows in section 1.12 that minimizing the functionals described by equations 1.63 

and 1.67 is equivalent for solving the Poisson equation. You find a similar proof in math textbooks. 
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This equivalence is also valid for other differential equations. The figure below shows a table with 

different differential equations and the corresponding functional that needs to be minimized.  

 

Note that the functional can be interpreted as some type of energy expressions. Consider for 

example a Dirichlet boundary value problem with no volume charge density. The functional to be 

minimized is given by Jackson equation 1.63, i.e.  

 𝐼[𝜓] =
1

2
∭ ∇𝜓 ∙ ∇𝜓𝑑3𝑥

 

𝑉
− ∬ 𝑔𝜓𝑑3𝑥

  

𝑉
 

Which is minimum if  satisfies a Poisson-like equation within volume V and the departures  

vanishes on the boundary; so for → and g→ /o the minimization yields the equation of motion. 

For a case where =0 this expression changes to: 

𝐼[𝜓] =
1

2
∭∇𝜓 ∙ ∇𝜓𝑑3𝑥

 

𝑉

 

So multiplying this with o gives the total electrostatic energy of the system since the term under 

the integral is E2.  

Jackson outlines in section 1.12 how these functionals can be used to find an approximation for 

the electric potential of such boundary value problem. The first step is to determine a good guess 

solution for the electric potential that obeys the boundary conditions of the problem. This 

approximation of the electric potential contains parameters that still need to be determined. To 

determine those parameters one first finds an expression for the functional using the trial solution 

and the given volume charge density using the correct functional from the table above. After that 
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one minimizes the functional, and of course minimalization of a functional is done by setting the 

derivative of the functional towards those constants equal to zero and solving the set of linear 

equations. This process is also sketched in the figure below. 

 

The remaining part of this section proves in a different way that minimizing of the above given 

functional is the same as solving the differential equation. To avoid the Green’s function and keep 

the math simple we will restrict ourselves here to the 1-dimensional case. For the 2-dimensional 

and the 3-dimensional case just double and triple the terms.  

Proof for 1D Dirichlet problem with zero volume charge density: We first provide the proof for the 

case that no volume charge density is present, so Laplace’s equation can be solved to find the 

potential. Furthermore, we assume that u(x) is an approximation for (x), the solution of Laplace’s 

equation. Therefore, u(x) does not need to be an exact solution of Laplace’s equation and differs 

from (x) such that:  

𝑢(𝑥) =  (𝑥) + 𝑒(𝑥)      [3] 

where e(x) is the error in the approximate solution u(x).   Furthermore, the approximation function 

u(x) is exact at the endpoints of each interval.  Therefore, the error function e(x) is necessarily zero 

at the endpoints of each interval,[𝑥1, 𝑥2], i.e.  

𝑒(𝑥1) = 𝑒(𝑥2) = 0 

∴ 𝑢(𝑥1) =  (𝑥1) 𝑎𝑛𝑑 𝑢(𝑥2) =  (𝑥2)      [4] 

For Laplace’s equation the proof is rather straight forward. In the absence of charge the energy of 

the system, F, is given by: 
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𝐹 = 
𝜀0

2
∫𝐸2𝑑𝑥 =

𝜀0

2
∫(−∇⃑⃑ )

2
𝑑𝑥 =

𝜀0

2
∫ (

𝜕

𝜕𝑥
)
2

𝑑𝑥    [5] 

Therefore, an approximation to the energy of the system using u(x) on the interval [0,1] provides: 

𝐹 ≈
𝜀0

2
∫(

𝜕𝑢

𝜕𝑥
)
2

1

0

𝑑𝑥 =
𝜀0

2
∫(

𝜕

𝜕𝑥
+

𝜕𝑒

𝜕𝑥
)
2

1

0

𝑑𝑥 

=
𝜀0

2
∫ {(

𝜕

𝜕𝑥
)
2

+ 2
𝜕

𝜕𝑥

𝜕𝑒

𝜕𝑥
+ (

𝜕𝑒

𝜕𝑥
)
2

} 𝑑𝑥
1

0
     [6] 

The middle term of this last line can be cleverly rewritten using the product rule for 

differentiation.  This rewrite (see below) breaks it into two terms, each of which are equal zero for 

independent reasons.  The first term of equation [7] is zero because e=0 at the boundaries since 

the boundary conditions provide the exact value of  at x=0 and x=1.  We see the second term is 

zero because of Laplace’s equation, i.e. 
𝑑2

𝑑𝑥2 = 0, hence:   

∫
𝜕

𝜕𝑥

𝜕𝑒

𝜕𝑥
𝑑𝑥 =

1

0

∫{
𝑑

𝑑𝑥
(
𝜕

𝜕𝑥
𝑒) − 𝑒

𝑑2

𝑑𝑥2
} 𝑑𝑥

1

0

 

= [
𝜕

𝜕𝑥
𝑒]

0

1

+ ∫ 𝑒
𝑑2

𝑑𝑥2 𝑑𝑥  
1

0
=  0 + ∫ 𝑒 ∙ 0𝑑𝑥  

1

0
= 0    [7] 

With this simplification the electrostatic energy in one dimension becomes: 

𝐹 ≈
𝜀0

2
∫ {(

𝜕

𝜕𝑥
)
2

+ (
𝜕𝑒

𝜕𝑥
)
2

} 𝑑𝑥
1

0
      [8] 

Note that both terms are positive due to the squares.  The first term represents the total energy of 

the system for (x), the solution to Laplace’s equation. The 2nd term will be small if 𝑑𝑢/𝑑𝑥 (the 

approximated electric field) is close to 𝑑/𝑑𝑥 (the electric field that is a solution of Laplace’s 

equation).  So the total energy of u(x) is close to the total energy of (x) but always larger.    

Proof for 1D Dirichlet problem with non-zero volume charge density: In the case where space 

charge is present, this statement is still true, but the expression is a little more complicated.  The 

electrostatic energy is no longer given by equation (3). To find the total electrostatic energy it is 

now necessary to subtract the contributions of the fixed charges, s, approximated with 𝜌𝑠𝑢, from 

the approximated field energy density:  
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𝐹 = ∫{
𝜀0

2
(
𝜕

𝜕𝑥
)
2

− 𝜌𝑠}

1

0

𝑑𝑥 ≈ ∫
𝜀0

2
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𝜕𝑢

𝜕𝑥
)
2

− 𝜌𝑠𝑢}

1

0

𝑑𝑥 

= ∫ {
𝜀0

2
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𝜕

𝜕𝑥
)
2

+ 2
𝜕

𝜕𝑥

𝜕𝑒

𝜕𝑥
+ (

𝜕𝑒

𝜕𝑥
)
2

]−𝜌𝑠𝑢} 𝑑𝑥
1

0
    [9] 

As shown earlier, we can simplify by rewriting the second term in the integrand.  However, we use 

Poisson’s equation instead of Laplace’s equation for the final substitution, and therefore is nonzero:  

∫
𝜕

𝜕𝑥

𝜕𝑒

𝜕𝑥
𝑑𝑥 =

1

0
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𝑑

𝑑𝑥
(
𝜕

𝜕𝑥
𝑒) − 𝑒

𝑑2

𝑑𝑥2
} 𝑑𝑥

1

0

 

= [
𝜕

𝜕𝑥
𝑒]

0

1
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𝑑2
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𝑑𝑥
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1
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Using the simplification of equation [11] we can now write the total electrostatic energy F as: 

𝐹 = ∫{
𝜀0

2
[(

𝜕

𝜕𝑥
)
2

+ (
𝜕𝑒

𝜕𝑥
)
2

] + 𝑒 ∙ 𝜌𝑠 + (
𝜕𝑒

𝜕𝑥
)
2

−𝜌𝑠𝑢}𝑑𝑥

1

0

 

= ∫ {
𝜀0

2
[(

𝜕

𝜕𝑥
)
2

+ (
𝜕𝑒

𝜕𝑥
)
2

] − 𝜌𝑠(𝑢 − 𝑒)} 𝑑𝑥
1

0
    [12] 

This can be further simplified using −𝑒 =  : 

𝐹 = ∫ {
𝜀0

2
[(

𝜕

𝜕𝑥
)
2

+ (
𝜕𝑒

𝜕𝑥
)
2

] − 𝜌𝑠} 𝑑𝑥
1

0
= ∫ {

𝜀0

2
(
𝜕

𝜕𝑥
)
2

− 𝜌𝑠} 𝑑𝑥 + ∫
𝜀0

2
(
𝜕𝑒

𝜕𝑥
)
2

𝑑𝑥
1

0

1

0
 [13] 

The first two terms on the right hand side give the electrostatic energy of the solution of Poisson’s 

equation while the third term is clearly the error. Later, we will see how when minimizing F we 

arrive at differential equations involving 𝑢(𝑥) which makes 𝑒(𝑥) approach zero.  This sort of 

minimization algorithm is shown in the next section, and is a method of the calculus of variations, 

as used in classical mechanics to find the equations of motion.       



Based on “Comsol Tutorial: Electric Field of a Charged Sphere”, Brice Williams, Ryan Laughlin, W. Geerts,  6 

Finite Element Method. 

The finite element method uses the same approach but the approximation for the electric potential 

is via a piece-wise linear function. So the total space is divided up in small intervals and for each 

interval the electric potential is approximated by a linear function. The parameters of the electric 

potential are the electric potential at the internal boundaries of the interval. Summaring: 

1. u(x) will consist of a piece wise linear function defined over n intervals referred to by finite 

elements. We assume that u(x) is defined over the interval [0,L], so  u(x)→u1(x) for 0<x<x1, 

u2(x) for x1<x<x2, ….un(x) for xn-1<x<L. 

2. Parameterize u(x) by the electric potential at the internal boundaries, u1(x1), u2(x2), ….un-1(xn-1) 

3. u1(0)=left boundary value, un(L)=right boundary value. 

4. We define the following short-hand: u1(x1)=u1, u2(x2)=u2, ….un-1(xn-1)=un-1. 

5. Derive an expression for the functional of the system using the given volume charge density 

and u(x) in terms of parameters u1, u2, …un-1. Note that you have to sum over all intervals.  

6. Find values for the parameters that will minimize the functional given by equation 1.63 in 

Jackson. 

Parameterize u(x): To do so we divide the space up in small intervals (1D), surface areas (2D), or 

volumes (3D), called finite elements. For each element the solution of Poisson’s equation is 

approximated by a polynomial function; for example for element i the function u is given by ui(x). 

For 1D-problems this polynomial function could be a simple straight line, a parabola, or a more 

complicated polynomial function. For 2D-problems this polynomial function could be a simple 

plane, a 2-dimensional parabola, or a more complicated curved surface, etc. To keep the math 

simple we will limit ourselves here to a 1D problem with the following boundary conditions,  =

0 at 𝑥 = 0 and  = 𝑉𝑜 at 𝑥 = 𝐿. Furthermore we will assume that the space charge is zero and we 

will approximate the solution of Laplace’s equation in each element by a first order polynomial.  

We divide the space between 0 and 1 up in N finite elements and approximate in each finite element 

 by a linear function u i.e.  

𝑢(𝑥) = 𝑏1𝑥 + 𝑎1 𝑓𝑜𝑟 0 < 𝑥 < 𝑥1     [14] 

𝑢(𝑥) = 𝑏2𝑥 + 𝑎2 𝑓𝑜𝑟 𝑥1 < 𝑥 < 𝑥2     [15] 

⋮                                                                                                                        

𝑢(𝑥) = 𝑏𝑛𝑥 + 𝑎𝑛 𝑓𝑜𝑟 𝑥𝑛−1 < 𝑥 < 𝑥𝑛     [16] 

Note that 𝑎1, 𝑎2, … . 𝑎𝑛, and 𝑏1, 𝑏2, … 𝑏𝑛 are unknowns that depend on the internal estimates for the 

electric potential at the boundaries between the intervals. The objective is to determine values for 
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𝑎1, 𝑎2, … . 𝑎𝑛, and 𝑏1, 𝑏2, … 𝑏𝑛 so the piece wise linear function u is as close as possible to the real 

solution of Poisson’s equation. From the boundary condition at 𝑥 = 0 we can conclude that 𝑎1 =

0. Since  is continuous across the space, also u should be continuous. If we assume that u1 is the 

approximation of  at the boundary between element 1 and 2 (i.e. at position x1), and u2 is the 

approximation of  at the boundary between element 2 and 3 (i.e at position x2), etc., we can 

determine good estimates for a1, a2, ….an, and b1, b2, …bn from good estimates of  at the 

boundaries between the elements, i.e. from u1, u2, … un. This leads to the following equations: 

                                       𝑏1 =
𝑢1

𝑥1
 

𝑎2 = 𝑢1 −
𝑢2 − 𝑢1

𝑥2 − 𝑥1
𝑥1        𝑏2 =

𝑢2 − 𝑢1

𝑥2 − 𝑥1
 

. . . . . . . . . 

𝑎𝑛 = 𝑢𝑛−1 −
𝑢𝑛−𝑢𝑛−1

𝑥𝑛−𝑥𝑛−1
𝑥𝑛−1      𝑏𝑛 =

𝑢𝑛−𝑢𝑛−1

𝑥𝑛−𝑥𝑛−1
=

𝑉𝑜−𝑢𝑛−1

𝐿−𝑥𝑛−1
   [17] 

Where in the last equation the boundary condition at x=L is used and in the first expression the 

boundary condition at x=0 is applied. In addition to using the boundary conditions, we also divided 

the space up in small intervals (defined a mesh) and approximated (x) by a piece-wise linear 

function using the best estimations of u(x) at the boundaries of each interval as parameters.  

Find an expression for F: An expression for the functional provided above can be found from 

equation [5]. The integral in equation [5] can be split in n integrals, one for each finite element, and 

then be evaluated using the equations [17]. For this particular 1D case F is given by the following 

expression: 

𝐹 = ∫ 𝑏1
2𝑑𝑥

𝑥1

0

+ ∫ 𝑏2
2𝑑𝑥

𝑥2

𝑥1

+. . . . +∫ 𝑏𝑛
2𝑑𝑥

1

𝑥𝑛−1

= 𝑏1
2𝑥1 + 𝑏2

2(𝑥2 − 𝑥1)+. . . +𝑏𝑛
2(𝐿 − 𝑥𝑛−1) = 

(𝑢1
 −0)2

𝑥1−0
+

(𝑢2−𝑢1)
2

𝑥2−𝑥1
+. . . +

(𝑉𝑜−𝑢𝑛−1)
2

𝐿−𝑥𝑛−1
    [18] 

Minimize F: The best estimate for (x) can be found by minimizing F, i.e. taking the partial 

derivatives towards𝑢1, 𝑢2, … 𝑢𝑛−1, setting them equal to zero, and solving for 𝑢1, 𝑢2, … 𝑢𝑛−1. This 

gives the following set of linear equations: 

𝜕𝐹

𝜕𝑢1
= 0 ⇔ 2

𝑢1

𝑥1
− 2

𝑢2 − 𝑢1

𝑥2 − 𝑥1
= 0 
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𝜕𝐹

𝜕𝑢2
= 0 ⇔ 2

𝑢2 − 𝑢1

𝑥2 − 𝑥1
− 2

𝑢3 − 𝑢2

𝑥3 − 𝑥2
= 0 

. . 

    
𝜕𝐹

𝜕𝑢𝑛−1
= 0 ⇔ 2

𝑢𝑛−1−𝑢𝑛−2

𝑥𝑛−1−𝑥𝑛−2
− 2

𝑉𝑜−𝑢𝑛−1

𝐿−𝑥𝑛−1
= 0   [19] 

Here forth, the n-1 linear equations can be solved using matrices.  The above example assumes 

there is no space charge. If space charge is present equation [18] needs to be modified, but the 

algorithm is equivalent.  

To solve these equations in the matrix, COMSOL adjusts the approximation functions 𝑢𝑖(𝑥) on 

each internal boundary until the error function 𝑒(𝑥) is below a predetermined tolerance and thus 

the solutions match at the boundaries.  In the approximation to the solution, several iterations are 

needed to make solutions at the boundaries have a difference below the error tolerance.  Incidentally, 

the solution of Poisson’s equation has the lowest electrostatic energy, and therefore it is this solution 

that also satisfies the differential equations arrived at via variational calculus.   


